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Development of Unsteady Aerodynamic Analyses for Turbomachinery

Aeroelastic and Aeroacoustlc Applications

Summary

Theoretical analyses and computer codes are being developed under Contract NAS3-

25425 for predicting compressible unsteady inviscid and viscous flows through blade rows.

Such analyses are needed to determine the impact of unsteady flow phenomena on the struc-

tural durability and noise generation characteristics of turbomachinery blading. Emphasis

is being placed on developing analyses based on asymptotic representations of unsteady flow

phenomena. Thus, flows driven by small-amplitude unsteady excitations in which viscous

effects are concentrated in thin layers are being considered. The resulting analyses should

apply in many practical situations, lead to a better understanding of the relevant physics,

and they will be efficient computationally, and therefore, appropriate for acroelastic and

aeroacoustic design applications.

Under the present phase (Task III) of this contract research program, the effort has been

focused on providing inviscid and viscid prediction capabilities for subsonic unsteady cas-

cade flows. Thus, a composite (global/local) mesh, gust response solution capability for

the linearized inviscld component of the flow has been developed, and an existing nonlin-

ear viscous-layer analysis has been extended and coupled to the inviscid analysis to provide

a weak inviscid/viscid interaction solution capability for unsteady cascade flows. The lin-

earized inviscid and the nonlinear viscous layer analyses are described in detail in this report.

Numerical results are also presented to illustrate the effects of vortical excitation on the invis-

cid pressure response and acoustic excitation on the viscous-layer response for representative

two-dimensional compressor, turbine and flat plate cascade configurations. These results

show that nonuniform mean flow phenomena can have a substantial impact on the response

of cascades to vortical gusts, particularly for gusts occurring at high wave numbers. In

addition, for flat plate cascades the viscous-layer responses to acoustic excitations from up-

stream tend to be linear, but high frequency or high amplitude acoustic excitations from

downstream, which travel against the main stream flow direction, are likely to excite signifi-

cant nonlinear responses. Finally, because of boundary layer separation, weak inviscid/viscid

interaction solutions can only be determined for a very restricted range of flow conditions.

Therefore, a strong, or simultaneous, coupling of the inviscid and viscous-layer analyses must

be developed to provide a useful unsteady viscous aerodynamic analysis for realistic cascade

configurations.
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1. Introduction

The unsteady aerodynamic analyses intended for turbomachinery aeroelastic and aeroa-

coustic predictions must be applicable over a wide range of operating conditions and to un-

steady excitations at moderate through high reduced frequencies. In addition, these analyses

must be capable of predicting unsteady pressure responses that arise from various sources of

excitation. The latter include structural (blade) motions, variations in total temperature and

total pressure (entropy and vorticity waves) at inlet and variations in static pressure (acous-

tic waves) at inlet and exit. Finally, because of the large number of controlling parameters

involved, there is a stringent requirement for computational efficiency, if the analysis is to be

used successfully in the blade design process. To satisfy this latter requirement a number of

restrictive assumptions must be introduced into the development of an appropriate unsteady

aerodynamic model.

The theoretical analyses that have been developed to predict the aeroelastic and aeroa-

coustic behavior of turbomachinery blading, i.e., the onset of blade flutter, the amplitudes

of forced blade vibration and the sound pressure levels upstream and downstream of the

blade row, have, for the most part, been based on the following geometric and aerodynamic

assumptions. The blades of an isolated, two-dimensional cascade are usually considered with

the effects of neighboring structures being represented via prescribed nonuniform flow condi-

tions at inlet and exit. In addition, the Reynolds number is assumed to be sufficiently high

(i.e., Re _ oo) so that the displacement of the inviscid flow by viscous layers has a negligible

impact on the unsteady pressure field. Finally, the unsteady excitations are assumed to be

sufficiently small so that a linearized treatment of the unsteady inviscid flow is justified.

Until recently, the inviscid unsteady aerodynamic analyses that have been available for

turbomachinery aeroelastic applications were based on classical linearized theory, as reviewed

by Whitehead in Ref. [1]. Because of the limitations in physical modeling associated with the

classical linearization researchers have developed more general inviscid unsteady aerodynamic

linearizations. These account for the effects of important design features such as real blade

geometry, mean blade loading and operation at transonic Mach numbers on the unsteady

aerodynamic response of two-dimensional cascades [2, 3, 4]. The unsteady disturbances

are regarded as small-amplitude harmonic fluctuations relative to a nonuniform steady (in a

coordinate frame attached to the blade row) background flow. The steady flow is determined

as a solution of a nonlinear inviscid equation set, and the linearized unsteady flow, as the

solution of a set of linear equations with variable coefficients that depend on the underlying

steady flow. This type of analytical model has received considerable attention in recent years,

and we refer the reader to the articles by Whitehead [5] and Verdon [6, 7] for a description

of the theoretical formulation and recent numerical results.

In particular, the li..2nearized inviscid flow analysis (LINFLO), described in Refs. [6] and

[7], employs a velocity decomposition introduced by Goldstein [8, 9], and later modified by

Atassi and Grzedzinski [i0], to split the linearized unsteady velocity into rotational and

irrotational components. This decomposition leads to a very convenient description of the

linearized unsteady perturbation -- one in which closed form solutions can be determined for

the entropy and rotational velocity fluctuations in terms of the drift and stream functions of

the underlying steady flow and numerical field methods are required only to determine the



unsteadypotential. The latter is governedby an inhomogeneouswaveequation in which the
sourceterm dependsonly upon the rotational velocity field. Finite-differenceproceduresfor
solving the potential equation havebeendevelopedfor the prediction of unsteady subsonic
and transonic flows excited by blade vibrations or acoustic disturbances [11], and for the
prediction of unsteadysubsonicflowsexcited by entropic and vortical gusts [12].

The unsteadyflowsof practical interestusuallyoccurat high, but finite Reynoldsnumber,
sothat viscouseffectscanhavean impact on the unsteadypressureresponse.Provided that
large-scaleflow separationsdo not occur, the overall flow field canbe separatedconceptually
into "inner" viscousor dissipativeregions,consistingof thin layers that lie along the blade
surfaces(boundary layers)and extenddownstreamfrom the bladetrailing edges(wakes),and
an "outer" inviscid region. Solutions to the completeflow problemcan then be determined
by an iterative processinvolving successivesolutions of the inviscid and viscid equations.
If the inviscid/viscid interaction is "weak", then at eachstep of the iteration, the inviscid
and viscid solutions can be determinedsequentiallywith the pressurebeing determined by
the inviscid flow. However, in most flows, strong inviscid/viscid interactions occur due,
for example, to boundary-layerseparations,shock/boundary-layerinteractions and trailing-
edge/near-wakeinteractions, and the pressuremust be determined by solving the inviscid
and viscouslayer equationssimultaneously.

To date, there has been no effort to couple a viscous-layeranalysis to the steady and
linearized unsteady inviscid aerodynamicanalysesthat have beendevelopedfor turboma-
chinery aeroelasticand aeroacousticapplications. As a steptoward this goal, a fully nonlin-
ear unsteady viscous-layer analysis (UNSVIS), which can also be applied to predict steady

flows, was developed in Ref. [13]. This approach, rather than one in which the results of

separate nonlinear steady and linearized unsteady viscous analyses are superposed, will allow

an assessment to be made of the relative importance of nonlinear unsteady effects in vis-

cous regions. In the UNSVIS analysis the flow in the viscous layer is described by Prandtl's

equations, with algebraic models used to account for the effects of transition and turbulence.

These equations are solved in terms of Levy-Lees type variables using a finite-difference tech-

nique in which solutions are advanced in time and in the streamwise direction. Numerical

solutions are determined by marching implicitly, first in time and then in the streamwise

direction, over several periods of unsteady excitation from an initial steady solution, and

from an approximate time-dependent, upstream flow solution. Numerical results were pre-

sented in [13] for flat-plate airfoils and for the turbine cascades, studied experimentally by

Dring et al. [14, 15]. These were found to be in good agreement with previous analytical and

numerical solutions for flat-plate airfoils and with the experimental results for the turbine

cascades.

1.1 Scope of the Present Effort

The objective of the research program being conducted under Contract NAS3-25425 is

to provide efficient theoretical analyses for predicting compressible unsteady flows through

two-dimensional blade rows. Such analyses are needed to understand the impact of unsteady

aerodynamic phenomena on the aeroelastic and aeroacoustic performance of the blading. The

work being conducted under this contract is directed primarily towards low-speed aeroelastic

applications, however, for the most part it will apply more generally to the aeroelastic and



aeroacousticperformance of turbomachinery blading operating at high subsonic through
transonic Mach numbers.

In the first phaseof this program [16] the linearized inviscid analysis (LINFLO) was
extendedto predict the responseof a cascadeto entropic and vortical excitations. Here,the
velocity decompositionof Refs.[8]--[10] wasemployedto split the unsteadyvelocity into ro-
tational and irrotational parts. Closedform solutionswerethendeterminedfor the unsteady
entropic and rotational velocity fluctuations, and the potential fluctuations weredetermined
numerically on an H-type mesh in which the streamlines of the steady background flow were

used as mesh lines. Numerical solutions were reported for several configurations including

flat-plate cascades, a compressor exit guide vane, a high-speed compressor cascade, and a
turbine cascade.

Under the present effort the linearized inviscid analysis (LINFLO) and the nonlinear

viscous-layer analysis (UNSVIS) have been extended and coupled to provide a weak vis-

cid/inviscid interaction solution capability for unsteady cascade flows. In particular, a com-

posite (global/local) mesh solution capability for flows driven by entropic and vortical gusts

has been incorporated into LINFLO. The meshes used in the composite analysis are the gen-

eral curvilinear H-mesh of Refs. [12] and [16] and a polar type local mesh. Also, analytical

expressions for the values of the inviscid flow variables at moving blade and wake surfaces,

i.e., at the edge of viscous layers, have been developed and incorporated into LINFLO, to

provide the inviscid information needed for an unsteady viscous-layer calculation.

The UNSVIS analysis has been extended so that the unsteady viscous effects in the

vicinity of leading-edge stagnation points and in blade wakes can be predicted. In particular,

a similarity analysis has been developed to predict unsteady viscous compressible flow in the

vicinity of a moving leading-edge stagnation point and incorporated into the existing UNSVIS

code. This analysis provides the "initial" upstream information needed to advance or march

the viscous-layer calculation downstream along the blade and wake surfaces. Initial upstream

profiles for the latter calculation are specified at a distance from the mean stagnation-point

location which is beyond the furthest point at which any reverse flow, associated with the

motion of the stagnation point, might occur. In addition, the wake analysis used previously

in UNSVIS has been extended so that the changes or jumps in the inviscid velocity that

occur across vortex-sheet unsteady wakes could be properly accommodated.

The linearized inviscid and nonlinear viscous-layer unsteady aerodynamic analyses are

described in detail in this report, and demonstrated via application to several cascade con-

figurations. In particular, the inviscid analysis has been applied to predict the pressure

response of compressor and turbine cascades, and their flat plate counterparts, to vortical

excitations. Our numerical results indicate that it is important to account for mean flow

nonuniformity in predicting the pressure response resulting from the interaction of a vorti-

cal gust and a cascade, particularly for high-wave-number gusts. The nonlinear unsteady

viscous-layer analysis has been applied to study the viscous-layer response of an unstaggered

flat-plate cascade and a turbine cascade to external pressure excitations. The fiat-plate re-

suits indicate that the viscous-layer responses to upstream pressure excitations are essentially

linear over a broad range of excitation amplitudes and temporal frequencies, but significant

nonlinear responses occur for downstream pressure excitations at high amplitude or high

temporal frequency. Finally, the coupled LINFLO/UNSVIS analysis has been applied to a

turbine cascade subjected to a pressure excitation from upstream to demonstrate the current



weakinviscid/viscid interaction solution capability on a realistic cascadeconfiguration.



2. Physical Problem

We consider time-dependent, high Reynolds number (Re) flow, with negligible body

forces, of a perfect gas with constant specific heats and constant Prandtl number (Pr) through

a two-dimensional cascade, such as the one shown in Figure 1. The unsteady fluctuations in

the flow arise from one or more of the following sources (Figure 2): blade motions, upstream

entropic and vortical disturbances, and upstream and/or downstream acoustic disturbances

which carry energy toward the blade row. These excitations are assumed to be of small

amplitude, periodic in time, and periodic in the cascade "circumferential" direction.

The mean or steady-state positions of the blade chord lines coincide with the line segments

q = _tan@+mG, 0 < _ < cos@,m = 0, A-I, 4-2, ... , where _ and q are coordinates

in the axial-flow and cascade directions, respectively, m is a blade number index, O is the

cascade stagger angle, and G is the cascade gap vector which is directed along the q-axis

with magnitude equal to the blade spacing. The blade motions, "R.Bm(x,t), where 7_B," is

the displacement of a point on a moving blade surface (Bin) relative to its mean or steady-

state position (Bin), x is a position vector and t is time, are prescribed functions of x and

t. The entropic, .__o_(x,t), vortical, __oo(x,t), and acoustic,/_,,_:oo(x, t), excitations, where

the subscripts -c¢ and +cxz refer to the far upstream and far downstream flow regions,

respectively, are also prescribed functions of x and t. However, a prescribed far-field behavior

must be a solution of the fluid-dynamic field equations, and the incident pressure disturbances

must satisfy the requirement that acoustic energy travels toward the blade row. Since the

unsteady aerodynamic excitations are periodic in q and t, it is often useful to describe

them via Fourier series representations. In this case the complex amplitudes, fundamental

frequencies and fundamental circumferential wave numbers of the various excitations are the

prescribed quantities.

We assume that far upstream (say _ < __) and far downstream (_ > _+) from the

blade row, the mean flow in the inviscid region is at most a small irrotational perturbation

from a uniform free stream. In addition, any shocks that might occur are assumed to be

of weak to moderate strength. Finally, blade shape and orientation relative to the inlet

freestream direction, the inlet to exit mean static pressure ratio and the amplitudes, modes,

frequencies and wave numbers of the unsteady excitations are such that viscous effects are

confined within thin layers, which remain essentially attached to the blade surfaces, and

extend downstream from the blade trailing edges.

In the present discussion all physical variables are dimensionless. Lengths are scaled

with respect to blade chord, time with respect to the ratio of blade chord to upstream

freestream flow speed, density and viscosity with respect to their upstream freestream values,

respectively, velocity with respect to the upstream freestream flow speed, normal and shear

stresses with respect to the product of the upstream freestream density and the square of

the upstream freestream speed, temperature with respect to the square of the upstream

freestream speed divided by the fluid specific heat at constant pressure, and entropy with

respect to the fluid specific heat at constant pressure.
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2.1 Mathematical Model

The field equations that govern the fluid motion follow from the mass, momentum and

energy conservation laws and the thermodynamic relations for a perfect gas. After ensemble

averaging the resulting equations, equations for the (statistical) mean values of the flow

variables are determined. These contain turbulent correlations, which must be estimated

empirically. As a consequence of the high Reynolds number assumption, separate sets of

equations can be constructed to describe the flow in the "outer" inviscid region and in the

"inner" viscous-layer regions. The flow in the inviscid region is governed by a coupled set

of nonlinear differential equations (i.e., the Euler equations) along with jump conditions at

shocks and at vortex-sheet unsteady wakes. In continuous subregions the energy equation

can be replaced by the requirement that the entropy following a fluid particle must remain

constant. In addition, the attached flow assumption requires that the inviscid unsteady flow

must be tangential to the moving blade surfaces, and the uniform flow conditions at inlet

and exit, the entropic and vortical fluctuations at inlet, and the static pressure disturbances

at inlet and exit that carry energy towards the blade row must be specified. The flows in

the viscous layers are governed by Prandtl's equations and are'subject to no-slip conditions

at the moving blade surfaces. In addition, the streamwise velocity and the thermodynamic

properties of the fluid at the edges of the viscous layers must be matched to the corresponding

inviscid quantities at the blade surfaces and along the reference wake streamline.

Even with the simplifications resulting from the high Reynolds number approximation,

the unsteady aerodynamic problem still involves prohibitive computational times. Because

of this, the traditional approach has been to examine linearized forms of the governing invis-

cid equations with the intention of providing useful theoretical predictions of the unsteady

aerodynamic response information required for turbomachinery aeroelastic and aeroacoustic

applications. In one such approach, the unsteady flow in the inviscid region is regarded

as a small perturbation of a nonlinear mean or steady background flow. In this case the

first-order unsteady fluid motions are governed by linear equations with variable coefficients

that depend upon the steady background flow. In addition, the first-order motions that arise

from the various Fourier modes of unsteady excitation are not coupled. Hence, they can be

determined independently. Indeed, it is sufficient to develop solution procedures for a single

harmonic (in t and r/) component of a given disturbance. Solutions for arbitrary disturbances

and arbitrary combinations of various disturbances can then be obtained by superposition.

Thus, in linearized inviscid analyses we consider small-amplitude blade motions of the
form

"R.s,,(x + mG, t) = ae{rB(x)exp[i(wt + too)I}, x C B, (2.1)

where rB is the complex amplitude of the blade displacement, a is the phase angle between

the motions of adjacent blades, Re{ } denotes the real part of { } and B denotes the reference

(m = 0) blade surface. The external aerodynamic excitations are small-amplitude, harmonic

perturbations of a uniform freestream flow, and therefore must be of the form

_(x, t) = $-oo(x- V-oot) = Re{s_oo exp[i(t¢_oo • x + wt)]}... ,

_(x,t) = __oo(X- V_oot) = Re(¢_oo exp[i(t¢_oo • x + tat)]}... ,



and

_i(x, t) = _t,_(x, t) = Re{pt,=_ exp[-t3_c_ + i(oc_, . x + oat)]} . . . , _ _ _ . (2.4)

Here s-oo, ff__ and pI,_=_o are the complex amplitudes of the entropic, vortical and acoustic

excitations, w is the temporal frequency, 0¢_:oo is the wave number with _¢,_,:_oo= aG -1,

and the/3_:oo are attenuation constants. It follows from the governing equations that the

temporal frequency and wave number of an entropic or vortical excitation are related by

w = -t¢-oo • V-oo, where V_oo is the uniform relative inlet velocity, but more complicated

relationships exist between w and Ica:oo for pressure excitations [17].

As a consequence of the foregoing unsteady aerodynamic linearization, the first-order

inviscid flows arising from excitations of the form (2.I) through (2.4) will be harmonic in

time, and they will satisfy a blade-to-blade periodicity condition. Therefore, these flows

can be determined by solving a time-independent, linear, boundary-value problem, over a

single extended blade-passage solution domain, for the complex amplitudes of the linearized

unsteady flow variables. Also, because of our assumptions regarding shocks and the steady

flow far upstream of the blade row, the steady background flow will be isentropic and irrota-

tional. In this case, closed form solutions can be determined for the unsteady entropic and

vortical perturbations. Therefore, numerical field methods are required only for determining

the first-order unsteady pressure fluctuations.
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3. The Flow in the Inviscid Region

3.1 Unsteady Perturbations of a Potential Mean Flow

For small amplitude unsteady excitations, i.e., [s__l, I_-_l, etc., ,.- O(e) << 1, the

time-dependent flow can be regarded as a small perturbation of an underlying nonlinear

mean or steady background flow. Thus, for example, we can express the time-dependent

velocity in the form

V(x,t) = V(x) + "_(x,t) +... , (3.1)

where V(x) is the local mean velocity and _(x, t) is the first-order (in e) unsteady velocity.

In addition, Taylor series expansions, e.g.,

s = + 7a. +...)Is, (3.2)

and surface-vector relations, i.e.,

rs=rs+ "ns ns+ ... and ns=ns- "ns rs+ ... (3.3)

can be applied to refer information at a moving blade, wake or shock surface to the corre-

sponding mean surface. Here 77.(x, t) = xs - xs is the displacement of a point on the moving

surface relative to its mean position, the subscripts S and S refer to the moving and mean

surface locations, respectively, and the unit tangent, % and normal, n, vectors are oriented

such that n x r points out from the page

The equations that govern the steady and first-order unsteady flow properties are de-

termined by substituting the foregoing expansions into the full time-dependent, nonlinear

governing equations, collecting terms of like power in e and neglecting terms of O(e 2) or

higher. This procedure provides a nonlinear boundary-value problem for a steady back-

ground flow and a linear variable-coefficient problem for the first-order unsteady flow in

which the coefficients depend on the underlying steady flow. The first-order or linearized

unsteady fluctuations caused by a periodic harmonic unsteady excitation will be harmonic

in time, e.g.,

¢(x,t) = Re{v(x)exp(iwt)} . (3.4)

In addition, the steady and, for an excitation at wave number t% = aG -1, the linearized

unsteady flow properties will satisfy the following circumferential conditions, e.g.,

V(x + raG) = V(x) and v(x + raG) = v(x)exp(ima) . (3.5)

Thus, solutions to time-independent nonlinear steady and linearized unsteady flow problems

are required only over a single extended blade-passage region of the cascade. In addition,

since analytic far-field solutions can be determined [17], the numerical solution domain can

be restricted further to a single extended blade-passage region of finite extent in the axial

direction.

9



The Steady Background Flow

Because of our assumptions regarding shocks and the flow far upstream of the blade row,

the steady background flow is isentropic and irrotational; i.e., V = V¢, where ¢ is the

steady velocity potential. Thus, the field equations that govern this flow are

V • (_V_) =0 (3.6)

and
(M__V/M) 2= (M-ooA) 2= _'Y-x = (TM2-_P) (_'-1)/_= (7- 1)M-2_ T

= 1 7 - 1M2oo[(V¢)2 _ 1] = 2 + (7 - 1)M-2_
2 - 2+(3,-1) M2 '

(3.7)

where M, A, _, P and T are the local Mach number, speed of sound propagation, density,

pressure and temperature, respectively, in the mean or steady background flow and 7 is the

specific heat ratio of the fluid. Surface conditions for the zeroth-order or steady flow apply

at the mean positions, Bin, Wm and Shin,,, of the blade, wake and shock surfaces, where the

subscript n refers to the nth shock associated with the mth blade. Since, by assumption,

the flow remains attached to the blade surfaces, a flow tangency condition applies at such

surfaces. In addition, mass and tangential momentum must be conserved across shocks, and

the steady pressure and normal velocity component must be continuous across blade wakes.

Numerical procedures for determining two-dimenslonal steady potential flows through

cascades have been developed extensively, e.g., see [3, 18], particularly for flows with subsonic

relative inlet and exit Mach numbers (i.e., M_ < 1). In such calculations far-field boundary

conditions are imposed at axial stations placed at finite distances upstream and downstream

(i.e., at _ = _a=) from the blade row, where linearized solutions describing the behavior

of the steady potential can be matched to a nonlinear near-field solution. In addition, a

Kutta condition is usually imposed at blade trailing edges in lieu of pres_:ribing an exit

freestream property. Finally, the usual practice is to solve the conservative form of the mass-

balance equation (3.6) throughout the entire fluid domain. Thus, the shock- and wake-jump

conditions are not imposed explicitly. Instead, shock phenomena are captured through the

use of special differencing techniques. Wake conditions are satisfied implicitly, because the

fluid properties are continuous and differentiable across wakes. If needed, mean shock and
wake locations can be determined a posteriori from the resulting steady solution.

3.2 Linearized Unsteady Equations

The field equations that govern the first-order unsteady perturbation of an isentropic and

irrotational steady flow can be expressed as a system of coupled differential equations for the

complex amplitudes of the first-order entropy (g), velocity (_') and pressure (15), respectively

(see [8, 19]). In general, we require a solution to this system subject to prescribed flow

conditions far upstream and far downstream from the blade row, the flow tangency condition

at moving blade surfaces, and, since the inviscid field equations apply only in continuous

regions of the flow, jump conditions at moving shocks and blade wakes.

As indicated by Goldstein [8, 9] the system of field equations that govern the linearized

unsteady flow can be recast into a very convenient form by decomposing the unsteady velocity

10



into rotational (vn) and irrotational (We) parts. Under this decomposition the rotational
velocity, vR, is divergence-freefar upstreamof the bladerow, i.e., V "vR - 0 for _ < __, and
the unsteadypressuredependsonly upon the potential ¢ through the relation p = -_D¢/Dt,

where D/Dt = iw + _7_ • _7 is a convective derivative operator based on the mean flow

velocity. The unsteady vorticity is given by _ = V × vn. Here we apply a modified form

of the Goldstein decomposition, which was introduced by Atassi and Grzedzinski [10], to

facilitate the numerical resolution of the velocity potential, i.e., we set

v =v. + we =vR+ we. + we, (38)

where ¢. is a convected or pressure-less potential (D¢./Dt = 0), which renders v.. n =

(vR + _r¢.). n = 0 at blade and wake mean positions.

With the decomposition (3.8) the system of field equations that governs the unsteady

flow variables s, vn and ¢ can be written in the form

/)____s= 0 (3.9)
Dt

_t(vR_D sV_/2) + [(vR - sV_/2) • V]vV = 0 (3.10)

and

_t(A -_ )- fi -iV. (fiVe) = # -1V • [fi(vR + re.)] = #-_V • (fly.). (3.11)

These equations are coupled only sequentially, i.e., they can be solved in order to determine

the complex amplitudes s, vR and ¢. Moreover, since the entropy fluctuation is governed

by a convection equation, it can be determined as a solution of Eq. (3.9) in terms of the

prescribed upstream entropy field. The rotational velocity fluctuation, vm is governed by

a modified convection equation and can be determined as a solution of Eq. (3.10) in terms

of the prescribed upstream entropy and rotational velocity fields. The velocity potential,

¢, is governed by a second-order partial differential equation with source term fi-l_,. (fiv.)

and depends, therefore, upon the rotational velocity, the convected potential, and boundary

condition information both far upstream and far downstream of the blade row as well as on

the blade, wake and shock surfaces.

Far-Field Behavior

We have assumed that the mean or steady flow is at most a small (i.e., of O(e)) pertur-

bation from a uniform stream both far upstream (_ < __) and far downstream (_ > _+) from

the blade row. Therefore, in these regions, the first-order (in e) unsteady field equations can

be reduced to constant coefficient equations for which analytical solutions can be determined

(see [17]). For example, it follows after replacing V(I) by V__ in (3.9) and (3.10) that the

complex amplitudes of the entropy and rotational velocity fluctuations far upstream of the

blade row are given by

=  -ooexp(i,,_oo•x), < (3.12)
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and
vn(x) = vn,-ooexp(it¢_oo,x), _ < __ , (3.13)

where s_oo and ¢_oo = (V × vn)-oo = it¢_oo x Vn,_oo, the complex amplitudes (at x = 0) of

the incident entropic and vortical gusts, are prescribed. The circumferential wave number,

_,,_:oo, is a/G and it follows from (3.9) and (3.10) that to-V_oo = -w. Since the rotational

velocity is divergence-free far upstream of the blade row, the vectors t¢_oo and vn,-oo are

orthogonal, and therefore,

vR,_oo= i(,¢_oo× ¢_oo)/I, _ool . (3.14)

The velocity potential fluctuations in the far upstream and far downstream regions de-

pend upon the acoustic excitation as well as the response of the cascade to the imposed

unsteady excitations. We can set

¢(x) = eE(X) + en(x) for _ < _a: , (3.15)

where the potential component ¢6 accounts for acoustic excitations, i.e., pressure distur-

bances that either attenuate as they approach the blade row or propagate and carry energy

towards the blade row. In particular, it follows from (3.11) with _'¢ = V_:¢¢ that for an

acoustic excitation at temporal frequency w,

eE(X) = ¢,,_:oo exp[fl_:oo_ + it:Too" x], _ < (:r , (3.16)

where

p_:oo {flq:ooVq:oo cos _::Foo -- i[w "4- (_Too" V::FOO)]}-lpI,::F oo, (3.17)_l,_oo _ --1

the complex amplitudes pI,_oo are prescribed, t%,;_ = cr/G, and fl_:_ and J¢_,t:oo depend

upon the inlet/exit freestream conditions, and the temporal frequency (w) and interblade

phase angle (a) of the acoustic excitation. The potential component en is associated with

the acoustic and vortical response of the blade row and therefore, must be determined as

part of the unsteady solution.

3.3 Entropy and Rotational Velocity

Closed form solutions for the linearized entropy and rotational velocity fluctuations can

be determined in terms of independent variables that describe the steady background flow [8,

12]. For this purpose we introduce the Lagrangian coordinate vector

X=AeT+_eN • (3.18)

Here,

X
V-ldr# , (3.19)

A(x) = x_ + x_+[_(x)-_(_-)l_N

and

_(x) = x_ + fi(e_ × V). dr (3.20)
-+oN

are the drift and stream functions, respectively, of the steady background flow. Also, the

unit vectors eT, e/v(= e_ × eT) and e_ point in the inlet freestream direction, normal to
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the inlet freestreamdirection, and out from the page,respectively,x_ is the position vector
to the point of intersection (__,__) of the referenceblade stagnation streamline and the
axial line _ = __, dry, is a differential element of arc length along a streamline, and dr is a

differential vector tangent to the path of integration.

Note that DX/Dt = (V.V)X = V_¢¢ = eT and X _ x, as _ --+ -_. Thus, the solution

to the entropy transport equation (3.9), which satisfies the upstream condition (3.12), is

s(x) = s__ exp(it¢_¢o • X), (3.21)

and the solution to the rotational velocity transport equation (3.10) , which satisfies the

condition (3.13), is

vn(x) = [V(X. ,4_oo) + s_ooV@/2lexp(it¢,__. X), (3.22)

where

,,4._00 = vn,-_ - s__V_oo/2. (3.23)

The complex amplitude of the unsteady vorticity is

= V × vn = V(it¢_oo. X) × [V(,A__. X) + s__W@/2]exp(it¢__. X) , (3.24)

and _ --+ ___ = ire x vn,-_ as X _ x.

If the steady background flow stagnates at blade leading edges, as it will for realistic

configurations, the drift function will have a logarithmic singularity at the mean blade and

wake surfaces, i.e., A --* a0 Inn as n --* 0, where n is the normal distance from the surface

and a0 is a real constant. As a result, the exponential function exp(it¢_oo. X) will be

indeterminate, and the normal component of the rotational velocity will be singular, i.e.,

vn • n ---+ aan -1 exp(it¢_oo • X), where al is a complex constant, at such surfaces. We can

remove this singular behavior from the blade and wake surface conditions that determine

the unsteady potential, ¢, by prescribing a convected potential of the form [10]

¢. = [-iw-lA-oo • V-oo + F(ql)] exp(it¢__. X), (3.25)

where

= × •e acos a_oo -
2r(1 - iaow) sin [ G-_cos-__-_ ] (3.26)

is a complex function that depends upon, among other things, the behavior of the mean flow

in the vicinity of a leading-edge stagnation point. This choice of ¢. ensures that v. • n =

(vn + We.) • n = 0 at blade and wake mean positions.

After combining (3.22), (3.25) and (3.26), we find that the complex amplitude of the

source-term velocity, v. = vn + we., is given by

(dF-w-' (t¢_oox .A.__)- ez) VqJ + s__V_/2] exp(is¢__ • X) .v. = F'V(it¢_o,, . X) + _-_

(3.27)

Note that v. behaves like s__V¢ exp(it¢__ • X)/2 in the immediate vicinity of the mean

blade and wake surfaces, i.e., as n _ 0. Thus, v, • n = 0, but, if s_¢¢ ¢ 0, the tangential

component of the source-term velocity will be indeterminate at such surfaces.
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The velocitiesvn and v. dependupon A and q/ and the first partial derivative of these

functions. Therefore, the complex amplitudes of the unsteady vorticity, ¢ = V × vR =

_r × v., and the source term, fi -1V. (fly.), in (3.11) depend also upon the second partial

derivatives of A and 9. Thus, an accurate solution for the nonlinear steady background

flow is critical for determining the unsteady effects associated with entropic and vortical
excitations.

Numerical Evaluation

The complex amplitudes of the entropy, rotational velocity, vorticity, and source term

velocity are readily determined once the values of the drift and stream functions and their

spatial derivatives are specified over the single extended blade-passage solution domain.

For this purpose it is convenient to use an H-grid in which one set of mesh lines are the

streamlines of the steady background flow. An H- grid which covers the solution domain, i.e.,

which is bounded by the upstream and downstream axial lines _ = _: and two neighboring

mean-flow stagnation streamlines, is appropriate. The locations of the latter are determined

a posteriori from the solution for the nonlinear steady background flow. Once the boundaries

of the H-grid established, the locations of the interior grid points can be determined using

an elliptic grid generation technique as described in Ref. [12].

Because a streamline mesh is used, the drift function can be evaluated at each point in

the computational domain by a straightforward numerical integration of Eq. (3.19). The

procedure used in Ref. [12] is simply to specify the drift function along the far upstream

boundary e = __, and then to evaluate this function along each streamline using a second-

order accurate difference approximation. The derivatives of the drift and stream functions at

a given grid point are determined using the finite difference operators developed by Caspar

and Verdon [20]. Because the drift function is singular at blade and wake surfaces, one-sided

difference approximations are used to evaluate the derivatives of this function at points on

the mesh streamlines adjacent to these surfaces.

3.4 Velocity Potential

The unsteady potential (¢) is determined as a solution of the field equation (3.11) subject

to conditions at the mean blade and wake surfaces and in the far field. Flow tangency applies

at the blade surfaces, Bm, the fluid pressure and normal velocity must be continuous across

blade wakes, l/Y,,,, and mass and tangential momentum must be conserved across shocks,

Sh,,,,,_. As a consequence of the small unsteady-disturbance approximation, the conditions

on the linearized unsteady perturbation at the moving blade, shock and wake surfaces can be

imposed at the mean positions of these surfaces (see Ref. [19]), with the mean wake (W,,,),

i.e., the downstream stagnation streamlines, and shock (Shin,n) locations being determined

from the nonlinear steady solution. Thus, the flow tangency condition can be written as

v.n = V¢.n = [iwr + (V_-v)(r- V)r- (r- _7)_'¢] • n, x C B,n (3.28)

In addition, since the irrotational steady velocity and pressure are continuous and have

continuous derivatives across the mean-flow downstream stagnation streamlines, the wake
conditions reduce to

[p] = _D¢/Dt] = 0 and [v-n] = [V¢]-n = 0, x E Wm, (3.29)
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wherethe symbol [ ] indicates the jump or changein a quantity at a surfaceat which the
flow variables are discontinuous. Finally, if we neglect changesin entropy and rotational
velocity acrossshocks,the conservationlaws for massand tangential momentum yield the
following llnearized shock-jumpcondition for a shockthat terminates in the fluid

[Z(V¢ + vR- A-2 _---_V¢)] • n = -[_][iw + (re-r)r. V][([V¢]- n)-1[¢] ]

- (re. n)-1[¢] r. V(I_IV¢-r), x e Shin,..

(3.30)

Equation (3.30) provides a relation for determining the jump in the unsteady potential, [¢],

at the mean position of a shock. The shock displacement normal to the mean shock locus is

then given by rsh.n = --([VC]" n)-1[¢1.

The velocity potential in the far field is given by (3.15); the potential due to an acoustic

excitation at frequency w and circumferential wave number t%,Too = a/G, by (3.16). Usually

only acoustic excitations that are of propagating type are considered. For subsonic inlet and

exit conditions (M_:oo < 1) the velocity potential corresponding to a propagating acoustic

excitation at temporal frequency w > 0 has the form (3.16) with fl_:oo = 0, and

_(-) <_ -- aG-1 < _(+)_?,_:oo _?,_oo -- -- t_,_:oo ,

a(:F)where the circumferential wave numbers at which cut-off occurs, ,,_:oo, are given by

(3.31)

= 2 -1 ¢1 (3.32)• - M oo) (M :oosinfl:Foo:t: - M: oocos2

The axial wave number of the propagating acoustic excitation is

where

2 _'_oo) ,_¢,T_ = i(=Fld_ool+ MGj;_oo cos
)

2 _ im2 _ MGoG _[Gool = I(1 - M_oocod n_oo)-1_,

and

(3.33)

(3.34)

_oo = (wVtT_ + x, sin _2=_)/(1 - M_oo cos2 fi_:_) • (3.35)

Analytic solutions to (3.11), with VO = Va:oo , for the far-field potential component ¢R

which satisfy the requirements that acoustic response disturbances either attenuate with

increasing axial distance from the blade row or propagate carrying energy away from or

parallel to the blade row, and that vorticity must be convected downstream are given in

Ref. [17]. These solutions contain arbitrary constants that are determined by matching the

far-field analytic solutions for the velocity potential to near field numerical solutions.

Numerical Evaluation

A numerical resolution of the foregoing linear, variable-coefficient, boundary-value prob-

lem for ¢ is required over a single, extended, blade-passage region of finite extent. The field

equation, Eq. (3.11), must be solved in continuous regions of the flow subject to surface

conditions, Eqs. (3.28-3.30), at the mean blade, wake and shock surfaces. In addition, the
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near-field numerical solution for the potential must be matchedto far-field analytical solu-
tions at finite distances(_ = _=) upstream and downstream from the blade row. Numerical

methods for determining ¢ for subsonic and transonic flows have been reported in Refs. [2],

[11], [20] and [21]. To date, transonic solutions have been determined only for flows in which

only a single normal shock occurs in each blade passage and for unsteady flows in which

s = _" --= 0. Thus, numerical solution procedures, see [12] and [16], for the entropic and

vortical gust problems have only been developed and implemented for subsonic flows. The

development of such procedures for the transonic gust response problem remains, therefore,

as a subject for future research.

Because of the stringent and conflicting requirements placed on computational meshes

for cascade flows, a composite-mesh, which is constructed by overlaying a polar-type local

mesh and an H-type cascade mesh, has been adopted for determining the unsteady potential.

The H mesh is used to resolve unsteady phenomena over the entire solution domain; the

local surface-fitted mesh, to resolve phenomena in the vicinities of a rounded blade leading

edge and/or a shock. The cascade mesh facilitates the imposition of the cascade periodicity

conditions (3.5) and the matching of the analytic and numerical unsteady solutions at the far

upstream (_ = __) and far downstream (_ = _+) boundaries. Use of this mesh alone is often

sufficient for resolving unsteady subsonic flows. The local mesh allows an accurate modeling

of unsteady leading-edge and shock phenomena. It is constructed so that two "radial" lines

coincide with the predicted mean shock locus to provide upstream and downstream shock

mesh lines for the accurate imposition of shock-jump conditions.

Since the cascade and local body-fitted meshes differ topologically, a zonal solution pro-

cedure for overlapping meshes has been adopted in Ref. [11] for determining the unsteady

potential. In the region of intersection between the two meshes, i.e., the region covered by

the local mesh, certain cascade mesh points are eliminated depending upon their location

within the local mesh domain. The discrete equations are written separately for the cascade

and local meshes and coupled implicitly through special interface conditions, resulting in a

single composite system of finite-difference equations that describe the unsteady flow over

the entire solution domain.

The finite-difference model used to approximate the unsteady equations on the cascade

and local meshes has been described in detail in Ref. [20]. Algebraic approximations to the

various linear operators, which make up the unsteady boundary-value problem, are obtained

using an implicit, least-squares, interpolation procedure that is applicable on arbitrary grids.

This procedure employs a nine point "centered" difference star at subsonic field points,

and a twelve point difference star at supersonic points. At a blade boundary point a nine

point one-sided difference star is used on the cascade mesh, while nine- or six-point one-

sided stars are used on the local mesh. Shocks are fitted in the local-mesh calculation

by approximating the shock-jump condition (3.30) using one-sided difference expressions to

evaluate the normal derivatives of the unsteady potential on the upstream (supersonic) and

downstream (subsonic) sides of the shock. At those points along the shock mesh lines at

which the steady flow is continuous (i.e., at points lying beyond the end of the shock), the

condition [¢] = 0 is imposed.

The systems of linear algebraic equations that approximate the unsteady boundary-value

problem on the cascade and local meshes are block-tridiagonal for subsonic flow and block-

pentadiagonal for transonic flow. A subsonic solution on the H-mesh alone is determined
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using a direct block inversion scheme. Composite (cascade/local)meshsubsonicor tran-
sonicsolutions are determinedusing a different scheme.Becauseof the cascade/localmesh
coupling conditions, the compositesystemof discreteequationscontainsa sparsecoefficient
matrix of large band width. Consequently,specialstorageand inversiontechniquesmust be
applied to achievean efficient solution. Oncethe compositesystemof unsteadyequationsis
cast into an appropriate format, it canbe solvedusingGaussianelimination [11].

3.5 The Inviscid Response

At this point wehavepresenteda linearizedunsteadyaerodynamicformulation that de-
scribesthe general first-order fluid-dynamic perturbation of an isentropic and irrotational
subsonicor discontinuoustransonic steadybackgroundflow. We have alsooutlined the nu-
merical proceduresused to evaluatethe unsteadyentropy, rotational velocity and velocity
potential. Solutions to the linearizedunsteadyproblem are required to determine the aero-
dynamic responseinformation neededfor aeroacousticand aeroelasticpredictions, i.e., the
unsteadypressurefield and the unsteadypressuresacting at the moving blade surfaces.In
particular, we refer the readerto Refs.[7, 22] for a descriptionof the various local and global
unsteadyaerodynamicresponseparametersthat areusedin aeroelasticinvestigations.

Approximate solutions for the full time-dependentflow properties are constructed by
superposingthe results for the steadyand the unsteadyflow properties,e.g.,

/5(x,/) = P(x) +/_(x, t) + _/Ssh,,,,.(x, t ) +... , (3.36)

where iS(x) = Re{p(x)exp(iwt)}. The first two terms on the right-hand-side of Eq. (3.36)

account for the steady and the first-harmonic contributions to the time-dependent fluid pres-

sure acting at the point x. The third term accounts for the anharmonic contribution to the

time-dependent pressure caused by the motions of shocks, and is determined by analytically

continuing the steady solution from the mean to the instantaneous shock locations [22, 23].

Thus, the first-order anharmonic response depends on the steady values of the fluid proper-

ties and the unsteady shock displacements normal to the mean shock loci, ('R.. n)Sh..,.. The

regions of anharmonicity are confined to thin strips containing the mean shock loci.

The steady background flow is described by the velocity potential, q), which is determined

in terms of a prescribed inlet Mach number (M__), flow angle (fl-oo), and cascade geometry.

The steady velocity, V = _rq), is determined from this potential, as are the steady values of

the thermodynamic properties of the fluid [cf. (3.7)]. The total enthalpy, H = T + V2/2, of

the steady background flow is constant and is given by

H = H-oo = (3'- 1) -1M_¢0+_-2 1 (3.37)

The linearized unsteady flow is described by the dependent variables ._, _., (_ and "R.sh.n,

which are determined in terms of prescribed values of the frequency (w), interblade phase

angle (rr), and the complex amplitudes, rs, s-oo, _-_ and pt,3:oo, of the imposed unsteady

excitation. The first-harmonic unsteady velocity is _ = _. + _rff, and the first-harmonic ther-

modynamic properties of the fluid can be determined in terms of the independent variables

._ and _.
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It followsfrom the equationof statefor a perfectgasandthe fundamental thermodynamic
identity relating entropy, pressureand density that

/_ = .y-x (.y _ 1)(_ + _T), (3.38)

and

, (3.39)

respectively, where t" is the linearized unsteady component of the fluid temperature. After

combining (3.38) and (3.39) and recalling that i5 = -fiD4/Dt = -fi(O/Ot + V_. V)4, we

find that the flrst-harmonic flow properties are related by

)/fi + _ = .y-'_/P = (-y- 1)-'({/T- _) = -A-2D¢/Dt . (3.40)

The first-harmonic total enthalp- h, is given by

= T_ ,de�Dr + V(_. [_'. + V¢] + .... (3.41)

The Inviscid Flow Along Moving Blade and Wake Surfaces

The values of the inviscid flow quantities along the moving blade and wake surfaces must

be available to perform an analysis of the unsteady flows in the viscous layers. These can be

determined in terms of their values at the mean surface locations and the blade and wake

displacements via Taylor series expansions, e.g.,

/Ss = Ps + 15s + "J_-WP[s + Y_ PSh, + ... , (3.42)

where 7_ is the surface displacement vector. In addition, relations between the unit tangent

and normal vectors at the instantaneous and mean surface positions, cf. (3.3), are needed to

determine the velocity components at the moving surface from information available at the

mean surface. Here, the subscript $ refers to points xs = xs + "Rs on the moving surface,

and S, to the points Xs on the mean surface.
If we now restrict our consideration to continuous, i.e., shock-free steady background

flows, the unsteady velocity at a moving blade or wake surface is given by

= [v + + (n. v)V]s + ...

= [re + + v4 + (n. v)Va]s + ...
(3.43)

Expressions for the tangential and normal components of the fluid velocity at a moving blade

and wake surface follow from (3.3), (3.43) and the conditions V(I)- ns = 0 and _, .ns = 0.

We find that

Vs .7"s = [V(I) + _-. + V4 + (77_. V)V¢Is • rs + ... (3.44)

and

Vs .ns = [Vq_ + ('R.. V)V¢]s-ns + .... Ot .ns. (3.45)

The thermodynamic properties at the moving blade and wake surfaces are determined

using Taylor series expansions along with .the thermodynamic property relations for the
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steady (3.7) and linearized unsteady(3.40) flows. After performing the necessaryalgebra,
we find that for shock-freeflows

ps+gS- _ -(1'-1 _ss-._s =-As 2 -_-+'R.V[(V¢)2/2] + .... (3.46)
S

Finally, the total enthalpy of the fluid at a moving blade or wake surface is given by

/)s = [H + h + 7_- _7_/]s + .... (3.47)

Since the total enthalpy is constant in the steady background flow, i.e., H = H__, and

[V¢. _.]s = _(_'_" r)2/2 at blade and wake mean positions, we can write

= H-oo + Tsgs - [b¢/Dtls + V+. (We + _.)s +

= [H_oo(1 + g) - be/Dr + V+. V¢]s + ....

(3.48)

Expressions for the anharmonic values of the time-dependent flow properties in the field

and at moving blade and wake surfaces can be readily determined following the methods

of Refs. [22] and [23]. However, in the present effort only subsonic inviscid and viscous-

layer flows will be calculated, and therefore, only the steady and first-harmonic values of the

time-dependent inviscid flow properties will be required.
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4. The Flow in the Viscous Layer

4.1 Governing Equations

The viscous region consists of thin boundary layers that lie along the upper and lower

surfaces of each blade and thin wakes which extend downstream from the blade trailing

edges, as indicated in Figure 3. We assume the blade motions to be of sufficiently small

amplitude, i.e., on the order of the viscous-layer displacement thickness (_), that the system

of field equations that governs the flow in a viscous layer is invariant under a transformation

from space- to blade-fixed coordinates. Thus, in terms of the blade-fixed r, n coordinates we
can write

0 0-7+ 0(i0)0___7-+ 0( ?)0N- 0, (4.1)

P Dt _ + (Re)-' -- - P-_-n _u-_v' (4.2)

and

Dt Ot + (Re)-1 /_ (1 - (Pr) -1) _00 _ 0/t- On + (4.3)Pr On

Here, _" and l/are the velocity components, relative to the blade-fixed frame, in the positive

r- and n-directions, respectively, and /_ is the molecular viscosity of the fluid. The terms

that account for the acceleration of the blade-fixed frame are assumed to be small and have

therefore been neglected in reducing the Navier-Stokes equations to viscous-layer equations.

In equations (4.1)-(4.3) the coordinates r and n measure distances along and normal to,

respectively, a blade surface or a reference wake streamline, and D/Dt - O/Ot + _r. _7 is

the convective derivative operator in the blade-fixed frame. The reference wake streamline

emanates from a blade trailing edge and is entirely contained within the viscous wake. A

distinction should be made between the independent variables that describe the flows in the

upper and lower surface boundary layers and in the wakes, e.g., by attaching subscripts to

r and n. However, as a convenience, we are neglecting to make this distinction explicitly.

The symbols _, U, V, P, H, and _ in Eqs. (4.1)--(4.3) refer to ensemble (or Reynolds)

averaged values of the fluid dynamic variables; C, C and h' are the values associated with

random turbulent fluctuations, and the overbar indicates a turbulent correlation, which

must be determined empirically. As a consequence of the high Re and small-amplitude

approximations, the pressure in the thin viscous layer is a function only of r and t, and

= T + 02/2. Since the interaction between the flows in the viscous layer and the external

inviscid stream is assumed to be weak, the pressure and the flow properties at the edge of

the viscous layer are determined by the inviscid values of these variables at the blade and
wake surfaces.

In addition to the foregoing conservation equations, the equation of state for a perfect

gas, i.e.,

/5_ 3'- 1_7_ ' (4.4)
7
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a law relating the molecular viscosity to the temperature, e.g.,

=( e (4.5)
P-oo _,_-_] ¢ + Tc '

and equations relating the turbulent correlations u_v ' and h'v t to the ensemble-averaged flow

quantities, i.e.,
00 a/7

_U','=--e--_n and _vTv_=-e_q-_- n - PrT On ' (4.6)

are also required. Equation (4.5) is a form of Sutherland's Law. Here #__ is the molecular

viscosity at the temperature T-o_ and To is a constant, which for air has a dimensional

value of ll0°K [24]. The turbulent correlations u'v-'-wand h'v---7 have been related to mean flow

gradients, using Prandtl's mixing-length hypothesis. Here e and ¢_ are the eddy viscosity

and eddy diffusivity, respectively, and play roles similar to their molecular counterparts.

The eddy diffusivity is related to the molecular diffusivity through the introduction of the

turbulent Prandtl number, PrT.

Initial and Boundary Conditions

The foregoing system of field equations is parabolic in time and in the streamwise direc-

tion. Therefore, the streamwise component of the velocity and the total enthalpy must be

known for all time at some upstream streamwise location, and these variables, along with

the normal velocity, must be known throughout the solution domain at some initial time.

Also, conditions on the fluid properties at the edge(s) of the viscous layer, i.e.,

U---_U,(r,t) and #_H_(r,t) for n---,-l-cx_, (4.7)

where the limits +cx_ and -oo refer to the edges of the upper (+) and lower (-) surface

boundary layers and the upper and lower edges of a wake, a no-slip condition and either a

prescribed temperature or heat flux condition at a solid blade surface, i.e.,

_'=9=0 and /_=//_o(r,t) or On -Q_(r't) for n=0, 7-<vt_ ; (4.8)

and a condition on the fluid velocity normal to a reference wake streamline, i.e.,

9=0 for n=0, r>'rte, (4.9)

must be enforced. Here the subscripts w and e denote the values of the fluid properties at a

solid wall and at the edge of the viscous layer, respectively, and the subscript te refers to the

airfoil trailing-edge point. The fluid velocity, 0r, and total enthalpy, H_, at the edges of the

viscous layers are determined by the inviscid solution along the blade surfaces and reference

wake streamlines [c.f. Eqs. (3.44) and (3.48)].
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Turbulence and Transition Models

The models used here and in Ref. [13] to simulate the effects of turbulence and transition

on the flow in the viscous layer are the algebraic eddy-viscosity model proposed by Cebeci and

Smith [25], the transition length correlation proposed by Dhawan and Narashima [26], and

the wake turbulence model proposed by Chang et al [27]. Also, since flows in turbomachines

are known to be characterized by high freestream turbulence levels, a simple modification

developed by Yuhas [28] has been incorporated into the turbulence model to account for the

effects of freestream turbulence on the viscous layer. These models are easy to implement,

and are known to be reasonably accurate for steady flows with mild pressure gradients. Their

ability to accurately represent turbulence and transition in unsteady flows is not known,

however; therefore, results must be interpreted with some caution.

The Cebeci-Smith algebraic model divides a solid-surface boundary layer into inner and

outer regions, where e = ei and e = co, respectively. The inner model is applied from the

wall out to the point at which el = Co; the outer model, from this point to the edge of the

boundary layer. The eddy viscosity in the inner region is given by

el= 7,r_(0.41n)2[1- exp(--n/71T)]2ReI[00b--Z_'

where

{ [ ( )1}26/] f -__ , -_.O(J '_ /],,, Pe

AT- _ tp #-_-n) w 1--11.8/5+ _- _ ,

.e t ot + o, ][P '
and 7tr is a longitudinal intermittency factor which models transitional flow.

The eddy viscosity in the outer region is given by

- /o_ 0/0o)eo = "TtrRepU_x (1 - dn ,

where

and

X = 1.55Xo(1 + r)-' , r = 0.5511 - exp(-.243z_/2 - .298z,)1 ,

Re0/425- 1 for Re0 > 425
Zl t 0 for Re0<425,

(4.10)

(4.11)

(4.12)

(4.13)

_ -_. U(1- •

The parameter r has been defined to account for low momentum thickness Reynolds number.

The Clauser constant, Xo, is usually set equal to 0.0168, but following Yuhas [28] we set

__ t

X0 = 0.016811.0 + 18.4(v' • v')2_oo + 99.6(v' 7-vTv')_oo], (4.14)
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where (v-r:-_-v')__, is the mean-squareof the freestreamturbulence velocity, to account for
the effectsof freestreamturbulenceon the developmentof the turbulent boundary layer.

Blade boundary layerscan contain transitional regionsof significant extent. Therefore,
a transition model is neededto properly predict boundary-layer flows. Severalmodelshave
beenproposed,basedon correlations with experimental data, for steady transitional flows.
One of theseis the Dhawan-Narashimaforced transition model [26] in which the intermit-
tency factor is given by

7t,-=l-exp -4.6513 _ _/ J
(4.15)

Herezl and T2 are the streamwise locations at the beginning and end of the transition region,

respectively. These locations can be specified as functions of time to model unsteady flows.

The eddy viscosity in the wake is based on the model developed by Chang et al [27]. At

each streamwise station in the wake Equation (4.13) is evaluated twice: once for -oo < n <

n,_a=, where n_,, is the location at which the streamwise velocity reaches a minimum value,

and once for nmi, < n < c¢. The maximum of these two values, em_x, is then used to set the

eddy viscosity, ew, at each streamwise position in the wake, i.e.,

T -- 7"re ]ew = e_,_x- [e_x- em_x,t¢] exp -- 205: J
(4.16)

In this equation r -- rte is the distance measured along the reference wake streamline from

the trailing edge point, and _t¢ is the sum of the upper and lower surface boundary-layer

thicknesses at the trailing edge. The boundary-layer thickness is defined to be the normal

distance from a blade surface to the point at which U/U, = 0.995.

4.2 Transformed Equations

For laminar flows, the Levy-Lees transformation (see Blottner [29]) provides independent

variables that effectively capture the growth of the viscous layer with increasing streamwise

distance. In addition, the transformed equations reduce to similarity equations at an airfoil

leading edge. These features facilitate the determination of a numerical solution. Thus, an

extension of the Levy-Lees transformation, in which the laminar edge viscosity is replaced

by an effective turbulent viscosity [30], is applied herein to accommodate unsteady turbulent

flOWS.

We define new independent variables _ and r/ according to

fo" U_v/-R-_ fon _dn (4.17)_= Qdr and 7- v/_

where Q = _U_pe[1 + (_o/P),] and _ and p are the turbulent eddy and molecular viscosities

in the steady background flow. In Ref. [13] the temporal mean values of the fluid properties,

_, 0_, and _, at the edge of the viscous layer were used to define Q; however, in the present

effort in which the unsteady inviscid flow is regarded as a small perturbation of a nonlinear

mean flow, we can replace the temporal mean values of these variables by their values in the
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steadybackgroundflow to avoid introducing additional nomenclature. The coordinate _ in
(4.17) is a function of r alone; the coordinate r/, by contrast, is a function of r, n, and t.

We also introduce the new dependent variables

_r 2_ (_0r/ _ Re.:) /t (4.18)J==_, v=_ o---;+7 +(-_v and 9=_,

where Q = _,/__,_,[1 +(e/_),]. After substituting Eqs. (4.17)and (4.18)into the viscous-layer

field equations, (4.1), (4.2) and (4.3), and performing some algebra, we find that

2_ -_ +N+ e -_,_3=o, (4.19)

2_ o7 O. OT+vOY_u_'0t +2_J:_ 0_+_3(_'J:+_VJ:_-9)+ _,(7_-9) - N°_(_°7_N]
and

= 0 (4.20)

2_ og Q 09 Og
+ 2_-_7-_ + v N + _(:r'-_) + ,_(_,_9 + _:r_-2-9)

+ '_N (i- _)_:N -N \ NJ =o,

(4.21)

where the following parameters have been introduced:

~2 ~-1al = l + 2T, ] ' a2 = U"_Ti al ,

_ = 2_(Q_,o:)-,°°oo_ _4 = 2_Q(Q_,gro) -'°(]"' o_'

= :
Or \2T,] ' O( '

(4.22)

_D(1 + _ID) and i
l = _/_[1 + (_/#).] '

_p[1 + ePr/(;PrT)I
_A_[1 + (6/#),]Pr

Special attention must be exercised in applying the foregoing transformation to unsteady

wakes. In the present analysis all quantities on the upper (i.e., n > 0) and lower (n < 0) sides

of a wake are referenced to their respective edge conditions, i.e., we set .T" = U/U + for n > 0

and 9r = (J/(J[ for n < 0. In general, the inviscid streamwise velocity, 0r, and total enthalpy,

/_, will be discontinuous across unsteady wakes. As a consequence, the dependent variables

.T" and 9 are discontinuous across reference (n = 0) wake streamlines. These discontinuities

must be taken into account in developing a numerical solution procedure, to ensure that the

physical variables (/], V and/_) are continuous across viscous wakes.
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Also, the upper- and lower-surfacevaluesof the independent variable ( will generally

differ at a blade trailing edge. Therefore, in the present effort the upper-surface _-variable

is used to continue the viscous calculation into the wake, i.e.,

++ Q+dTw.

However, two different q-coordinates, i.e.,

[ . >0,
d0

(4.23)

(4.24)

are used for the wake calculation. Thus, at the trailing edge, the lower-surface boundary-

layer solution must be interpolated onto the wake 7/ mesh before continuing the viscous
calculation into the wake.

Boundary and Initial Conditions on _" and G

In addition to satisfying the field equations (4.19)--(4.21), the dependent variables 9r

and {7 must be prescribed functions of _¢and r/at some initial time, and prescribed functions

of r/ and r at initial or upstream streamwise locations on the upper and lower surfaces of

each blade. Also, in terms of the transformed variables, the following conditions must be

imposed at the edge(s) of the viscous layer, on the blade surface, and along the reference

wake streamline, c.f. Eqs. (4.7), (4.8) and (4.9):

_'-+ 1 and {741 for Ir/[--_oo, (4.25)

and

._'=0, 1)=0, and {7={7_(_,r) or

i -

(0{7/0q)w = _._._r for r/= 0, _ _< _te,

(4.26)

1/=0 for r/=0, _>_¢te, (4.27)

respectively.

For the calculations reported herein, the condition at the initial time is the viscous-layer

solution in the absence of unsteady excitation, i.e., the solution for steady background flow.

The calculated transients resulting from this approximation have been found to die out with

increasing time. The upstream profiles, required at each time step of the unsteady viscous-

layer calculation, are obtained from a similarity analysis of the flow in the stagnation region,
as described below.

4.3 Stagnation Region

We seek a similarity solution for the flow in the stagnation region, which can be used

+ t), required to initiateto set the instantaneous upstream profiles, ._'(_, r/, t) and (_, ,rt,

a full viscous-layer calculation. The overall strategy is to develop a similarity solution for
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a simple flow configuration and then, to adapt this result for application to the unsteady
cascadeproblem. The present analysis for unsteady, compressibleflow is modeled after
the incompressibleanalysesdevelopedindependentlyby Rott [31] and Glauert [32]. Their
analysesprovided an exact solution to the Navier-Stokesequationsfor incompressibleflow.
This is not the casefor compressibleflow, however,becauseit is necessaryto neglect the
dissipationterm in the energyequationto obtain a similarity solution. Fortunately, frictional
heat dissipation is of limited importance for a wide rangeof practical flows.

We consider two-dimensionalcompressibleflow around a flat plate, which is oriented
normal to the stream direction and undergoesa harmonicmotion at velocity iwr_ exp(iwt)

in its own plane. As a convenience to this discussion, we use a complex-variable description

for the unsteady flow properties. It is to be understood, however, that the real parts of

the various complex parameters represent the actual physical variables. The flow in the

viscous layer will be determined in terms of spaced-fixed Cartesian coordinates, rs and

ns. The resulting stagnation-region solution can then be expressed in terms of plate-fixed

coordinates as a prerequisite to its implementation into the complete unsteady viscous-layer

calculation. The rs and ns axes are directed along and normal to the plate, respectively,

and the coordinate origin lies at the point at which the dividing inviscid streamline impinges

on the plate. The fluid velocity components in the rs- and ns-directions are U's and Vs,

respectively.
The inviscid flow is steady relative to the space-fixed frame, with velocity and pressure

gradient at the edge of the viscous layer (i.e., at ns = 0 in the inviscid region) given by

"_TS, c = _]fs,eers = CTser s , (4.28)

and

V/5 0/5 = __,Os, OUs'ee,s = -_¢c_rse_.s . (4.29)
- %

The constant c in these equations is determined by the behavior of the inviscid solution in

the vicinity of the mean stagnation-point location (Ts = 0). The total enthalpy at the edge

of the viscous layer is constant, i.e., He = Te + U_,e/2 = H_o_.

The flow in the viscous layer is described by the field equations (4.1)-(4.5), the edge

conditions (4.7) and the surface conditions (4.8), except that in the present case

Us(rs, ns, t) = iwrrexp(iwt) for ns = O. (4.30)

We assume that this flow is laminar and that the heat generated by viscous dissipation is

negligible, i.e., [tO2Lrs/On_ .._ O. The streamwise velocity and temperature can be expressed

in the forms

Us(rs, r/,t) = crsf'(rl) + iwr_.g(rl)e i''t , (4.31)

and

,.t)= L(rs.t)o(.fl. (4.32)

where
C nS

rl = _dns. (4.33)
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Note that OPlOns _ 0 and f_s<<_?s;therefore, _oI_ = 7_/7_ = 0 and H = ¢ + t)_/2 in the
viscous layer.

After substituting the foregoing results into the field equations that govern the flow in the

viscous layer and performing the necessary algebra, we obtain an expression for the normal

component of the fluid velocity, Vs, and the following set of ordinary differential equations

for f, g and 0.

fa _ ff,,_ (lf")'- 0 = 0 , (4.34)

iw

(--_ + f')g - f g' - (lg')' = O, (4.35)

and

Pr ] + fO' = O, (4.36)

where l= fi_/(fi_/_). The conditions on f, g and 0 at the plate surface (r/= 0) and at the

edge of the viscous layer (r/-, (x)) are

f(O) = f'(O) = O, g(O) = 1 and 0'(0) = 0 or 0(0) = 7_o/7_ ; (4.37)

and

f'(_) = 1, g(_)= 0 and 0(_)= 1. (4.38)

Note that for steady (g - 0), incompressible (0 = 1) flow, we recover the classical stagnation-

region problem studied by Hiemenz. Also, Eq. (4.36) is identical in form to the energy

equation that describes steady compressible stagnation-point flow [33]. Finally, the present

analysis can be readily extended to consider more general unsteady motions, e.g.,

N

(]s = crsf'(rl) + _ iw,,v,,,g,(71)exp(iwnt) • (4.39)
n=l

In this case solutions for N uncoupled equations for the g=, n = 1,2, 3,..., N, are required.

The set of nonlinear ordinary differential equations for f, 0 and 9 can be solved using

an implicit finite-difference technique similar to that used to obtain nonsimilar solutions to

the full unsteady viscous equations (cf. §4.4). The functions f and 0 must be determined

simultaneously, but they are independent of g, which can be determined once f is known.

To provide the upstream profiles required for a complete viscous-layer calculation it is

convenient to express the stagnation-region solution in terms of body- or plate-fixed coordi-

nates. Thus, we consider Cartesian coordinates r, n, where the r- and n-axes are parallel to

the spaced-fixed rs- and ns-axes, respectively, and the mean position of the r, n coordinate

origin coincides with the origin of the spaced-fixed rs, ns-frame. The streamwise positions

and velocities of a fluid particle in the two coordinate frames are related by

rs = r + r, exp(iwt) (4.40)

and

Us = 0 + iwr, exp(i_t) .

After combining (4.31), (4.40) and (4.41), we find that

0 = crf'(r/) -t- bA(rl)exp(iwt) ,

(4.41)

(4.42)
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where

and
b = cr,(1 - ioJ/c) ,

(1 - iwlc),_(rl) = f'(rl) + - 1].

At the plate surface U = O, and at the edge of the viscous layer

_r(q _ cx_) = D, = cT + bexp(iwt).

The total enthalpy n = Ug/2 + T is given by

H = (cTf')2/2 + c(1 - iw/c)-lbrf'(f ' + iwg/c)exp(iwt)

(4.43)

(4.44)

(4.45)

(4.46)

+(1 - iw/c)-2b2(f ' + iwg/c) 2 exp(2iwt)/2 + T,O .

The locations, i.e., T = +[vii, at which the stagnation-region solution can be applied as

an initial condition for an unsteady viscous-layer calculation are determined by two criteria.

First, the stagnation-point motion must be contained within the interval [-[r1], [vii] and

second, to avoid stability problems in the subsequent boundary-layer calculation, those points

at which flow reversals, i.e., (O0/On)_, < 0, occur must also be contained within this interval.

Reverse flow is associated with the lag in the response of the low-momentum fluid near the

wall to changes in the velocity at the edge of the viscous layer. The extent of the interval

over which the stagnation point moves, i.e., [--[TM[, ]rM]], is determined from the inviscid

velocity distribution (4.45) and is given by [-c-llbl,c[bH. The extent of the reverse-flow

interval, i.e., [-]rR[, ]vR[], is determined by the maximum and minimum values of 7 for

which (OU/Oq),, = 0. We find that

I'm[_ < c-Zlbl 1 + i(.¢c-lg'(O)/fH(O)l-- iw/c (4.47)

Thus, [rl[ >_ max([rM], ]rnD. For our application to unsteady cascade flows, we have found

that setting [rz[ = 2c-Zlb[ leads to reasonable results in the stagnation region and allows us

to continue the viscous-layer calculation over blades and their wakes.

In applying the foregoing stagnation-region analysis to unsteady cascade flows, we use

the inviscid velocity distribution along a blade surface, i.e.,

U_(r,t) = U,(r) + u,(r)exp(iwt) +... , (4.48)

where U,(r) and u,(r) are the nonlinear steady and the complex amplitude of the linearized

unsteady velocities, respectively, to determine the parameters c and b in (4.42) and (4.46). In

particular, these parameters are determined by matching the analytical velocity profile (4.42)

to the calculated inviscid velocities at -l-It, l, i.e., we set

c = (OU_/Or)_=o and b = u_(+rz) (4.49)

Thus, with w specified as an input quantity, the functions f 0 and g determined by an

implicit finite-difference procedure and the parameters b and c given by (4.49), the streamwise

velocity (4.42) and total enthalpy (4.46) profiles needed to initiate the unsteady viscous-layer

calculation can be specified.
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4.4 Numerical Solution Procedure

The transformed form of the viscous-layer equations [Eqs. (4.19)-(4.21) and (4.25)-(4.27)1

are solved by using a finite-difference approach to approximate the various partial deriva-

tives and to convert the system of differential equations into a system of algebraic equations.

Streamwise and temporal derivatives are approximated by first-order backward differences

and normal derivatives are approximated by second-order central differences. The stream-

wise momentum and energy equations contain nonlinear terms, and therefore, they must be

linearized to facilitate their solution at each point in space and time. This is accomplished

by using a Newton iteration in which the initial guess for the profiles comes from the solution

at the previous spatial or temporal step. The equations are solved using local iteration to re-

move the linearization error, and repeating the iteration until the values of the flow variables

converge to within a specified tolerance level. The finite-difference approximation results in

a block tridiagonal system of linear algebraic equations at each step, which is solved using

the Thomas block inversion algorithm.

The analyses for surface boundary layers and wakes are almost identical, except for the

implementation of different boundary conditions. In addition to replacing the surface no-

slip condition with a zero normal velocity condition at the reference wake streamline, the

possibility of jumps in the tangential velocity and total enthalpy across a viscous wake must

be taken into account. As discussed previously, the transformed governing equations are

written in terms of two different sets of variables, each applying on one side of the wake

streamline, and scaled to the edge conditions for that side. For example, on the upper side

of the wake, F + = u/u + and G + = H/H+; on the lower side, F- = u/u-_ and G- = H/HI.

The discretized equations on either side of the reference wake streamline are written in terms

of that side's variables. However, at the wake streamline, (r/= 0), variables from both sides of

the wake are used in the momentum and energy equations, due to the use of central-difference

approximations for the r/-derivatives. For consistency, the equations must be written in terms

of a single set of variables. This is accomplished here by writing the equations in terms of the

upper surface quantities. Thus, whenever a lower surface variable appears in the equations

at 71 = 0, it is rewritten in terms of the upper surface edge conditions. For example, the

variable F- is written in upper variables as F-. (u[/u +) = u-/u +. Further details on the

reference wake streamline procedure are given in the Appendix, where the finite-difference

solution procedure for the viscous layer is discussed in detail.

The finite-difference approximation is implemented on a grid that is nonuniform in both

spatial directions, and uniform in time. The grid distribution in the streamwise direction

is chosen so as to cluster points near the blade leading and trailing edges, with each mesh

interval being set equal to a constant times the previous one, according to the relation

A_t+,=K_A_I, I=1, 2, ... ,L (4.50)

where l is the streamwise mesh point index (1 = 1 at the blade leading edge and increases

with distance downstream), K_ > 1 from the leading edge of the blade to midchord, and

K_ < 1 from midchord to the trailing edge. The grid is then stretched (i.e., K_ > 1) aft of

the trailing edge, and generally extends between one and two blade chords downstream of

the trailing edge.
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A stretchedgrid is alsoemployedin the normal direction, with clusteringnearthe surface
to capture the large velocity gradients that occur near the wall, and to ensurethat, for
turbulent flow, there are enoughpoints in the near-wall region to adequately resolvethe
laminar sublayer. Geometric stretching is againemployed,with

Ar/n+l=K, Ar/,,, n=l, 2, ... ,N (4.51)

where n is a normal mesh point index (n = 1 at the blade surface or reference wake streamline

and increases with increasing distance into the flow). Since the resolution requirements are

a function of the solution, the normal grid stretching, Kn, and the spacing at the wall, Arh,

must be determined for each case. For turbulent flow, this is accomplished by monitoring

the value of Y+ at the first mesh point from the wall (i.e., Y+=_), where Y+ is a Reynolds

number based on the friction velocity, (_r_o/_,o) 1/_ and the normal distance from the blade

surface. For accuracy, Y2+ should be close to one, which can be achieved by adjusting Ar/x.

The stretching parameter Ii'_ is then adjusted to place the outer edge of the mesh, 77= r/N,

far enough from the surface to allow the edge conditions to be approached asymptotically.

The number of points used in the normal direction is chosen to allow the flow over the entire

viscous layer to be resolved accurately at all streamwise stations -- generally, between 50

and 100 points are sufficient.

The constant value of the time-step used for the temporal discretization is chosen based

on the frequency of the imposed unsteady excitation and the number of time-steps prescribed

for each period of oscillation, generally between 20 and 50.
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5. Numerical Results

Response predictions will be given below for two-dimensional blade rows operating at

subsonic Mach numbers and subjected to external unsteady aerodynamic excitations to

demonstrate the present capabilities of the linearized inviscid unsteady flow analysis, LIN-

FLO, and the unsteady viscous-layer analysis, UNSVIS. The inviscid analysis will be applied

to predict the response of compressor and turbine cascades, and their flat-plate counterparts,

to vortical excitations; the unsteady viscous analysis, to study the viscous-layer responses of
flat-plate and turbine cascades to incident acoustic excitations.

5.1 Inviscid Flow: Vortical Excitation

We consider two of the cascades studied in Ref. [16] -- a compressor exit guide vane

(EGV) and a turbine cascade proposed as the fourth standard cascade configuration for

turbomachinery aeroelastic investigations by Fransson and Surer in Ref. [34]. In addition,

we will compare the unsteady responses of these compressor and turbine configurations to

those of corresponding flat-plate cascades, i.e., flat-plate cascades having the same blade

spacing, G, and operating at the same inlet flow conditions, M__ and 9t-oo, as the real-

blade configuration. However, the flat-plate blades are staggered so that the blade mean

positions are aligned with the mean inlet flow direction, i.e., O = ft-oo. Therefore, the local

steady Mach number, M = M-oo, and flow angle, lq = f_-oo, are constants throughout the

flat-plate flow fields. The steady background flows through the EGV and turbine cascades

have been determined using the methods of Ref. [18]. In each case a Kutta condition has

been applied at blade trailing edges; therefore, only inlet uniform flow information, e.g.,
M-oo and ___, must be specified for the steady calculations.

First-harmonic unsteady solutions have been determined, using LINFLO, on a global H-

type mesh and, for one EGV calculation, on a composite mesh constructed from this H-mesh

and a polar-type local mesh. The H-mesh used here consists of 40 mean-flow streamlines

and 155 "axial" lines and extends one axial chord upstream and downstream of the blade

row. The mesh streamlines are packed near the blade and wake surfaces; the axial lines, near

the blade edges. The local mesh used in the composite-mesh EGV calculation consisted of

100 radial lines and 11 "circumferential" lines, with the latter being tightly packed near the

blade surface. As part of this study, classical linearized theory (CLT) response predictions

have also been determined for the flat-plate cascades using the analysis of Smith (Ref. [35]).

The unsteady flows are excited by vortical gusts. The temporal frequency, w, interblade

phase angle, a, and complex amplitude of the gust velocity component normal to the

freestream direction, i.e., vR,-oo • eN, are prescribed quantities. The component of the gust

velocity in the inlet freestream direction, vR,-oo • eT, is determined by the divergence-free

condition, i.e., it¢__ • vR,-oo = 0. The wave number t¢__ has a component x,7_¢¢ = aG-'

in the cascade- or 0-direction and a component XT = -wV.y_ = -w in the inlet freestream

direction. Therefore,

= --(w sec _-co -4- aG -1 tan Ft__)e_ + aG-le.

= --weT + (w tan fl__ Jr aG -1 sec _-oo)eN •

(5.1)
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For a pure vortical excitation the rotational velocity field is given by

vn(x) = V(X-vn,__)exp(i___. X), (5.2)

where X is defined in Eq. (3.18). For the flat-plate cascades and far upstream of the EGV

and turbine blade rows vn(x) = vn,-oo exp(it¢_oo • x), and the complex amplitudes of the

gust vorticity is _-oo = it¢_oo x vn,-oo.

Since the inlet and exit flows considered here are subsonic, a subresonant unsteady ex-

citation produces an acoustic response in which all waves attenuate with increasing axial

distance from the blade row. A superresonant (re, n) excitation produces a response in

which m and n such waves persist far upstream and/or far downstream, respectively, and

carry energy away from the blade row. An acoustic resonance occurs if at least one acoustic

response wave persists in the far field and carries energy along the blade row.

We will examine the response of the compressor, turbine and corresponding flat-plate

cascades to vortical gusts with vn,-oo "eg = (1,0), w = 5 and -3re < a < -_r. It should

be noted that w and a must be of opposite sign to model a realistic cascade/vortical gust

interaction. In the present study we set w > O, and therefore, _r must be less than zero.

Theoretical predictions will be given for the Mach number, drift function and stream function

in the steady background flows, and for the vorticity, source term, velocity potential and

pressure in the linearized unsteady flows through the compressor and turbine cascades. We

will also examine the behavior of the unsteady pressure differences [Ap(x) = p(xa) - p(x +)]

and unsteady aerodynamic moments (m) acting on the reference (m -- O) blades of the

compressor, turbine and corresponding flat-plate blade rows.

Compressor Ezit Guide Vane

The blades of the compressor exit guide vane (EGV) are constructed by superimposing

the thickness distribution of a NACA 0012 airfoil on a circular arc camber line with height

at midchord of 0.13. This cascade has a stagger angle O of 15 deg, a blade spacing G of 0.6

and operates at an inlet Mach number and inlet flow angle of 0.3 and 40 deg, respectively.

The calculated exit Mach number, exit flow angle and mean lift force, F_%, acting on each

blade are 0.226, -7.4 deg and 0.36, respectively. The predicted steady Mach number field

and Mach number distribution along a blade surface for the steady flow at M-co = 0.3

and f/-oo = 40 deg through the EGV are shown in Figure 4; the drift and stream function

contours, in Figure 5. Far upstream of the blade row, the drift function contours are parallel

to each other and perpendicular to the inlet freestream direction, but as the flow proceeds

downstream, gradients in the steady velocity produce distorted contours. These distortions

are mild over most of the blade passage, but quite severe in the immediate vicinity of the

mean blade and wake surfaces, where the drift function contours stretch downstream from

the leading-edge stagnation point.

The meshes used to determine global- and composite-mesh solutions for the unsteady po-

tential are depicted in Figure 6. The streamline global mesh shown here was also used to eval-

uate the rotational velocities, vn and v., the vorticity, if, and the potential-equation source

term,/3-1V • (/_v.), over the extended blade passage solution domain. For the composite-

mesh potential calculations, the values of these quantities at the local-mesh points were

determined by an interpolation from the global to the local mesh.
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Global- and composite-meshsolutions for the in-phase component (real part) of the

unsteady potential due to a vortical excitation at a = -2_" are shown in Figure 7 the global-

and composite-mesh results for the unsteady pressure-difference response, in Figure 8. The

results in Figures 7 and 8 indicate that there are only slight differences between the global

and composite-mesh unsteady flow solutions, and hence, that the streamline H-mesh of

Ref. [12] and [16] is adequate for predicting low-speed unsteady cascade flows. The global

mesh analysis is very efficient; for example, a complete unsteady flow calculation on a 155 ×40

global mesh requires about 2 1/2 minutes of CPU time on an APOLLO 10000 work station.

Most of the information determined from such a calculation can be saved and re-used in

subsequent unsteady flow calculations for different frequencies, interblade phase angles, and

modes of excitation, which then require only about 23 seconds of CPU time for each unsteady

case. Composite-mesh calculations typically require four (4) times the CPU time required for

a global mesh calculation. It should be noted, however, that the composite-mesh analysis

represents an important solution capability because it allows a great deal of flexibility in

prescribing a mesh structure for accurately analyzing linearized unsteady flows. In addition,

this type of capability will be essential for analyzing transonic problems in which a mesh

that conforms to the mean shock loci is required to accurately predict the effects of shock

displacements.

We proceed to examine in somewhat more detail the unsteady flows through the EGV

that are excited by vortical gusts with vn.-oo'eN = (1,0) and w = 5. These results (Figures 9

through 15) and similar ones for the turbine in Figures 18 through 24 were determined using

global mesh calculations. Contours of the in-phase component or real part of the unsteady

vorticity, source term and pressure are shown in Figures 9, 10 and 11, respectively, for vortical

excitations at a = -_r, -2r and -3_r. The wave-number magnitudes, [t¢_oo[, associated

with these gusts are 5.66, 10.73 and 17.08, respectively, and the arguments relative to the

axial flow direction, a = tan-l(xn,_oo/xe,_oo), are -112.1 deg, -77.8 deg and -67.0 deg,

respectively. The vortical gusts are distorted as they are convected by the nonuniform mean

flow through the EGV. The vorticity contours in Figure 9 and the source term contours in

Figure 10 indicate that this distortion increases in severity, i.e., the vorticity and source-term

contours are more severely stretched and re-oriented within the blade and wake passages with

increasing values of [t¢-oo[. The results in Figure 10 reveal the rather strong variations in the

source term that occur throughout the extended blade passage solution domain, particularly

for the high wave number gust.

The vortical gusts at a = -r and a = -3r produce a subresonant pressure response,

i.e., all acoustic response waves attenuate with increasing axial distance from the blade row

(see Figure 11). The vortical excitation at a = -2r produces a superresonant (1,1) response

in which a pressure response disturbance at w = 5 and x n = 0 propagates away from

the blade row in both the far upstream and far downstream directions. Note the spurious

pressure behavior indicated in Figure 11 at the upstream boundary (for a = -2r) and at the

downstream boundary (for a = -2r, -3r) of the solution domain. This can be attributed

to the nonuniform spacings between the mesh streamlines currently used in the global mesh

calculations. The global mesh streamlines must be packed near the blade and wake surfaces to

resolve the vortical flow near these surfaces, but this leads to a reduced accuracy in matching

the numerical near-field and analytical far-field solutions for the unsteady potential at the

inlet and exit boundaries, and thus, in predicting the acoustic response in the far field. The
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useof a composite-meshprocedurein which the global meshcontained uniformly spaced
streamlinesmight overcomethis problem.

Responsesat the referenceblades of EGV and corresponding flat-plate cascadesare
depicted in Figures 12-15. The flat-plate cascadehas a stagger angle of O = _ = 40

deg, a blade spacing G = 0.6, and operates at a Mach number, M, of 0.3. The flat-plate

predictions presented in Figures 12-15 have been determined using both LINFLO and the

classical linearized analysis of Smith (Ref. [35]). Recall that in the general linearization

the unsteady potential equation (3.11) contains a source term, i.e., _-xV. (_v.), and the

normal derivative of the potential, _7¢. n, is zero at the mean blade surfaces. For flat-

plate blades aligned with the inlet flow direction the source term reduces to V2¢.. In the

classical linearization the potential equation is homogeneous, and the normal derivative of

the potential cancels the normal component of the gust velocity at the mean blade surfaces.

Thus, a comparison between the present and the classical linearizations is quite meaningful

because it reveals the ability of the numerical field methods, associated with the former, to

accurately account for the strong source term variations that occur over the solution domain.

The pressure difference distributions that act on the reference blade of the EGV and flat-

plate cascades for vortical excitations at vR,-oo • eN = (1, 0), w = 5 and a = -r, a = -2r

and a = -3_- are shown in Figures 12, 13 and 14, respectively. The unsteady moments

acting on the reference blades of the two cascades are plotted versus interblade phase angle

for vortical excitations at vR,-oo'eg = (1, 0), W = 5 and -3r(-540 deg) < a < -_r(-180 deg

in Figure 15. Here, the excitations at a = -404.2 deg and -293.9 deg produce resonant

acoustic response disturbances far upstream and far downstream of the flat-plate cascade and

far upstream of the EGV; those at a = -414.3 deg and -308.8 deg produce such responses

far downstream of the EGV.

Vortical gusts are convected without distortion by the uniform mean flow through the

flat-plate cascade, i.e., the rectilinear vorticity contour patterns that exist far upstream of

the EGV blade row are maintained throughout the flat-plate flow field. The results in Fig-

ures 12-14 indicate the effects of gust distortion, due to nonuniform mean flow phenomena,

on blade pressure-difference responses. For the vortical gusts at or = -_r and a = -21r the

pressure-difference distributions along the EGV and flat-plate blades show somewhat similar

qualitative behaviors, but important quantitative differences. Such differences between real

blade and flat-plate responses coincide with intuitive expectations. In contrast, the responses

of the EGV and flat-plate blades to the vortical gust at a = -3a" bear almost no qualita-

tive resemblance. This result is somewhat surprising and, if correct, indicates the effect

of mean-flow nonuniformity on the unsteady pressure response of cascades to high-wave-

number vortical excitations to be quite substantial. The real blade and flat-plate moment

responses shown in Figure 15 again show some qualitative similarity except, perhaps, over

the phase-angle range -540 deg < a < -420 deg.

Note that the LINFLO and Smith analysis (CLT) pressure-difference predictions in Fig-

ures 12 through 14 for the flat-plate cascades are in excellent agreement. Indeed, the pressure-

difference curves predicted by the two analyses are almost coincident for the gusts at a = -r

and a = -2r, and only slight differences exist for a = -3r. The LINFLO and classical the-

ory predictions for the moment response (Figure 15) are in excellent agreement over the

entire interblade phase angle range, i.e., -37r < a < -_'.
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Turbine Cascade

As a representative turbine configuration we have selected the fourth standard config-

uration of Ref. [34], but for the present study we have modified the blade profiles defined

in Ref. [34] so that our example blades close in sharp, i.e., wedge-shaped, trailing edges.

The turbine cascade and the corresponding flat-plate configuration operate at an inlet Mach

number of 0.19 and an inlet flow angle of 45 deg, and the blade spacing G is 0.76. The

turbine cascade has a stagger angle of 56.6 deg, and the flat-plate blades are staggered at

O - f_ = 45 deg. The calculated exit Mach number and flow angle for the turbine are 0.49

and 72.0 deg, respectively, and the mean lift acting on each blade is -2.11. The predicted

steady Mach number contours and blade-surface Mach number distributions for the steady

flow at M-oo -- 0.19 and fl-o_ = 45deg through the turbine are shown in Figure 16. The

drift and stream function contours for this flow are shown in Figure 17. Note the stretching

of the drift function contours within the blade passage, which is caused by the acceleration

of the steady flow.

Linearized unsteady flow predictions for the turbine cascade, as determined using the

LINFLO global-mesh analysis, are presented in Figures 18 through 24. Contours of the in-

phase component or real part of the unsteady vorticity, source term and pressure are shown

in Figures 18, 19 and 20, respectively, for vortical excitations at a = -Tr, -27r and -3_-. The

wave number magnitudes, I1¢_001, and arguments with respect to the axial direction, a__,

for these excitations are 5.08, 8.36 and 13.50 and -125.4 deg, -81.7 deg'and -66.7 deg,

respectively. As indicated in Figures 18 and 19, the vortical gusts are highly distorted as

they are convected through the turbine blade row. The unsteady vortical and source term

contour patterns for the gusts at a = -2_r and _r = -37r are quite different from those for the

gust at (r = -Tr. In the latter case the rectilinear vorticity contours far upstream of the blade

row evolve into bowed shapes as the gust is carried through the blade row by the mean flow.

The vorticity contours for the gusts at a = -27r and a = -3_" are close to being straight lines

far downstream of the blade row, but these show substantial changes in orientation relative

to their upstream states. The source term contours in Figure 19 are severely distorted by

the turbine blade row from mid-blade passage to the downstream boundary of the solution

domain, particularly for the vortical gusts at a = -2_r and (r = -3_r. Also, the source terms

associated with the gusts at (r = -2_r and cr = -3_r have very large gradients within the

blade passage and downstream of the blade row. These give rise to relatively large unsteady

pressure responses, as indicated in Figure 20. Note that the vortical excitations at (r = -_"

and _r = -3_r produce a subresonant pressure response; whereas the excitation at _r = -27r,

a superresonant (1,1) response.

The unsteady pressure-difference distributions acting on the reference blades of the tur-

bine cascade, and its flat-plate counterpart, for vortical excitations at (r = -_', -2_r and

-37r are shown in Figures 21, 22 and 23, respectively. Moment responses to incident vortical

gusts with vn,-oo .eN = (1,0), _o = 5 and -3_r (-540 deg) < _r < --_r (--180 deg) are shown

in Figure 24. The excitations at o_ = -396.8 deg and a = -311.7 deg produce resonant

acoustic response disturbances far upstream of the turbine cascade, and far upstream and

far downstream of the fiat-plate cascade. Those at a = -389.0 deg and at a = -279.2 deg

produce such response disturbances far downstream of the turbine cascade. The unsteady

pressure differences associated with the turbine and flat-plate cascades are qualitatively sim-

35



ilar for a = -Tr, but differ substantially for a = -27r and a = -37r. The unsteady moment

responses, particularly those for the in-phase moment, differ substantially over a significant

range of interblade phase angles, i.e., -540deg < a < -300deg. Again, the flat-plate

pressure-difference and moment responses predicted by LINFLO and the classical analysis

of Smith are in very good agreement.

The unsteady response predictions for the turbine and flat-plate cascades again indicate

that mean-flow nonuniformities have a substantial impact on the unsteady aerodynamic re-

sponse of cascades to vortical gusts, particularly for gusts occurring at high wave number.

The large differences between the pressure-difference responses for the EGV and its cor-

responding flat-plate cascade for a vortical excitation at a = -37r and between those for

the turbine and its corresponding flat-plate configuration for excitations at a = -2re and

(r = -3_- suggest that additional studies be undertaken to better understand the effects of

mean-flow nonuniformity on blade response to high wave number vortical gusts.

5.2 Viscous Flow: Acoustic Excitation

Unstaggered Flat-Plate Cascade

As a benchmark case to demonstrate the unsteady viscous-layer analysis, UNSVIS, we

consider unsteady flow through an unstaggered flat-plate cascade. Here, the uniform inlet

velocity V__ is aligned with the mean positions of the blade chord lines. Hence, the steady

background flow is uniform with velocity, pressure and total enthalpy given by V = e¢,

P = (3,M2) -1, and g = ½ + (7- 1)-aM-2, respectively. The unsteadiness is excited by

an incident pressure disturbance, which carries acoustic energy toward the blade row from

either far upstream (-oo) or far downstream (+oo). The acoustic excitation travels in the

axial (or chordwise) direction, i.e., x, 7 = x v = o'/G = 0, and is therefore described by a

velocity potential of the form [cf. (3.17)].

q](x, t) = -Re{[i(_a:oo + w)]-lpt,_:oo exp[i(xe_:oo( + wt)]} , (5.3)

where w, t¢_ = x= and pt,,¢oo are the temporal frequency, axial wave number and complex

amplitude of the unsteady pressure excitation, respectively. The axial wave number is related

to the temporal frequency by [cf. (3.33)]

TwM

xe':F°° -- 1 + M (5.4)

Note that for a given temporal frequency, w, and Mach number, M < 1, I  ,+ool> Ix ,_ool,
because a disturbance coming from downstream travels against the freestream flow direction.

The flat-plate cascade produces no response to the pressure excitation described by

Eq. (5.3); therefore, this equation describes the entire first-harmonic inviscid flow field. The

time-dependent velocity, pressure, and total enthalpy in the flow are then given by

/5 = p + t5 +... = (7M2) -1 + Re{pt,_:oo exp[i(x_a:oo( + wt)]} +... , (5.5)

= V + 9 +...= [1 -t- MRe{pi,_:_ exp[i(x_,_:oo_ + wt)l]}e_ +... (5.6)
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and

= H + h +... = H + (1 + M)ae{p/,t:_ exp[i(x_,_:_ + wt)]} + .... (5.7)

where/5 = -De�Dr, _ = _'¢, and h = -D¢/Dt + V¢.e_ are the first-harmonic unsteady

pressure, velocity and total enthalpy, respectively. The real and imaginary components of

the complex amplitude of the first-harmonic unsteady pressure acting along each blade and

wake surface (0 G x = _ < 2) for a cascade operating at M = 0.5 and subjected to upstream

acoustic disturbances with px,-¢_ = (1,0) and w = 1, 2, 5 and 10 are shown in Figure 25;

similar results for downstream acoustic disturbances, in Figure 26. The pressure distributions

shown in Figures 25 and 26 have been determined from Eqs. (5.4) and (5.5).

The inviscid results in Eqs. (5.5) -- (5.7) have been used as edge conditions for a series

of unsteady viscous-layer calculations. The latter allow us to examine the effects of pressure-

excitation amplitude, temporal frequency and axial wave number on the behavior of the

viscous-layer displacement thickness, 6(x,t), surface shear stress _r,o = (Re)-l(_OU/On)_,

and wake centerline velocity UE. In particular, we can decompose each of these quantities

into Fourier series; e.g.,

(x)

_(x,t) : _o_[1 - _r/(_¢_X_)]dn = _ 5n(x)exp(in_t), (5.8)

where

- ..., (5.9)Od

=
to examine the behavior of their Fourier components. In this way we can gain insight into

the relative importance of nonlinear viscous effects and, therefore, into whether a linearized

viscous analysis could be applied to provide meaningful and efficient unsteady viscous-layer

solutions. Note that the lower limit on the integral in (5.8) must be changed to -oo if the

wake displacement thickness is to be determined.

A series of calculations were performed for upstream and downstream acoustic excitations

at the frequencies, w, listed above and complex amplitudes, pr,+_, of (0.1,0), (0.3,0), (0.5,0)

and (0.75,0). In each case the steady Mach number is 0.5 and the Reynolds number, Re,

is 106. The viscous-layer calculations were initiated at (x,t) = (0.01,0), and the laminar

flat-plate similarity solution was imposed as the initial condition in x and t. Also, the flows

were assumed to undergo instantaneous transition from laminar to turbulent at x = 0.02.

The viscous-layer calculation was carried out using 51 uniformly stretched (with K, 7 =

1.10) points across each boundary layer, with A_? = 0.0175 at the blade surface. The wake

grid consisted of 101 points across the viscous layer stretched in the same manner as for the

surface boundary layers. A total of 25 uniform time steps were used per temporal period of

the unsteady excitation. Two different axial or streamwise mesh distributions were used --

one for the excitations originating upstream and one for those originating downstream. In

each case the streamwise distribution was selected so that there were at least 20 mesh points

per wave length, 2_r/x¢._:oo, for the highest frequency considered, i.e., w = i0.

For disturbances originating upstream, a variably spaced streamwise mesh was used with

points clustered near the blade leading and trailing edges. The minimum streamwise spacing

on the blade was Ax _ 0.0177 at the blade edges, and the maximum was Ax _ 0.0611 near

mid-chord. The stretching used in the wake is identical to that used for the forward portion
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of the blade, with Ax ._ 0.0177 in the first wake interval and monotonically increasing to

Ax _ 0.11 at the farthest downstream calculation point (x = 2.0). The resulting grid had 29

points on the blade surface and 20 points along the wake. For the downstream disturbances

a nearly uniform grid was employed, with Ax _ 0.025 on the blade and 0.025 _< Ax _< 0.030

along the wake, where the grid was mildly stretched to distribute the points throughout the

interval x C (1,2]. The resulting grid had 40 points along the blade and 36 points along the
wake.

First, we consider the solution for an incident pressure disturbance from upstream with

pl,-oo = (0.5, 0), w = 5 and a = 0 deg. The temporal means, 60, r_,,0 and Ug,0, and the

magnitudes, ]6,[, [r,,,n[ and ]U_,,_[, of the first two harmonics (n = 1,2) of the displacement

thickness, 6, surface shear stress, _r,o, and wake centerline velocity, U_, as determined by

the unsteady viscous-layer solution, are presented in Figure 27 along with the corresponding

steady (IPl,-_ [ - 0) results. The steady viscous solution has also been determined using the

UNSVIS code, with the steady displacement thickness and surface shear stress given by

$(x) = [1-  U/( eU )ldn (5.10)

and _, = (Re) -1 (pOU/On)_, where fi and U are the density and streamwise velocity, respec-

tively, in the steady background flow. The differences between the steady and the temporal

mean values of the unsteady viscous quantities, and the amplitudes of the higher harmonic

unsteady quantities provide a measure of the importance of nonlinear unsteady viscous ef-
fects.

The results in Figure 27 indicate that nonlinear effects are relatively unimportant in the

unsteady flow driven by the prescribed upstream pressure excitation. However, similar results

in Figure 28 for an acoustic disturbance originating downstream, with pt.+oo = (0.5, 0), w = 5

and a = 0, indicate that the nonlinear response of the viscous-layer displacement thickness

can be quite significant. An unexpected result of the latter calculation is the predicted

increase in the time-mean of the unsteady displacement thickness with increasing distance

along the wake (i.e., as x ---* 2.0). In an attempt to determine whether this effect is physical

or numerical in origin, an unsteady viscous solution was calculated using a grid with twice

as many uniformly distributed streamwise points. It was found that, although slightly less

pronounced, this behavior was also present in the fine grid calculation.

The behavior of the zeroth- and first-harmonic components of the viscous parameters

is illustrated in Figures 29 and 30 for upstream acoustic excitations with pl,-_o = (0.5, 0),

a = 0, and w = 1,2, 5 and 10. Similar results for downstream acoustic excitations are given

in Figures 31 and 32. For the upstream case, the time-mean values and the magnitudes

of the first-harmonic viscous-layer response quantities are relatively unaffected by changes

in excitation frequency. In addition, the first-harmonic displacement thickness is essentially

out-of-phase with the first-order velocity fluctuation, _ie, at the edge of the viscous layer,

and the first-harmonic wall shear stress and wake centerline velocity are essentially in phase

with the edge-velocity fluctuation. The corresponding results (Figures 31 and 32) for the

downstream acoustic excitation show that frequency has a greater impact on the temporal

mean and the first-harmonic amplitudes of the viscous quantities. In particular, the time-

mean displacement thicknesses vary significantly with w and indicate that nonlinear effects
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are important at higher frequencies.As indicated in Figure 32, the first-harmonic displace-
ment thicknesseslag the fluctuating componentof the viscous-layeredgevelocity by phase
anglesranging from approximately -140 to -180 deg;the first-harmonic wall shearstresses
lead this fluctuating velocity by anglesranging from 0 to 40 deg; and the minimum wake-
streamwisevelocitiesare approximately in-phasewith the wake-edgevelocity fluctuation.

As a final illustration, weconsiderthe responseof the viscouslayer to different amplitudes
of acoustic excitation. In particular, numerical results are presentedin Figures 33 and 34
for excitations at w = 5, cr = 0 and P',a:_ = (0.1,0), (0.3,0), (0.5,0) and (0.75,0). For

disturbances from upstream the effect of unsteadiness on the time-mean values of _ and

_, is small, except for the highest disturbance amplitude, ]PI,-..l = 0.75, considered. The

effect on the time-mean wake centerline velocity is negligible. The results for the acoustic

excitations from downstream in Figure 34 once again indicate that such disturbances produce

much stronger nonlinear viscous-layer responses, particularly in the displacement thickness.

For both the upstream and downstream acoustic excitations, the phase angles (not shown)

of the first-harmonic viscous quantities relative to the edge velocity fluctuation are almost

independent of the excitation amplitude.

The foregoing results indicate that the viscous-layer response parameters _, _, and grE

behave essentially in a linear manner for acoustic excitations originating upstream of the

blade row. For excitations originating downstream, nonlinear effects can be significant at

high temporal frequencies (say w > 5) and/or high excitation amplitudes ([p1,+ool > 0.5).

For M = 0.5 the magnitude of the axial wave number for a pressure excitation from down-

stream is three times that for an excitation from upstream. This produces a corresponding

ratio in the magnitudes of the pressure gradients that drive the viscous solution, and is per-

haps responsible for the nonlinear response of the viscous layer to downstream disturbances.

Another factor is the direction of propagation of the acoustic excitation. We have performed

a series of calculations to isolate these effects and have found the latter, i.e., direction of

propagation, to be the dominant factor in promoting a nonlinear response in the viscous

layer.

The detected behavior of the displacement thickness in the far wake, i.e., increasing with

increasing z, for high frequency or high amplitude downstream disturbances is a somewhat

disturbing aspect of the present unsteady viscous solutions. A series of laminar calculations

were performed, and the results showed a similar behavior. Thus, the increase in displace-

ment thickness in the far wake (x _ 2) cannot be attributed to the turbulence model used

in the present viscous analysis.

Turbine Cascade

In order to demonstrate the coupled LINFLO/UNSVIS weak inviscid/viscid interaction

solution capability, we consider an unsteady flow through the turbine cascade of § 5.1. This

flow occurs at a Reynolds number, Re, of 5.0 × 10 s, an inlet Mach number, M__, of 0.19 and

an inlet flow angle, _-oo of 45 deg. The unsteadiness is excited by a pressure disturbance

from upstream, characterized by pl,-_ = (0.35, 0), x,,-oo = a/G = 0 and w = 1.0. The

inviscid steady Mach number field and Mach number distribution along a blade surface are

shown in Figure 16. For this example the unsteady pressure is essentially in-phase with

the upstream acoustic excitation; the in-phase component of the unsteady pressure field is
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depicted in Figure 35. The pressureexcitation producesa superresonant(1,1) response.
Therefore,the pressurecontours in Figure 35 indicate a muchhigher pressureamplitude at
the upstreamboundary than that due to the acousticexcitation alone. The temporal mean
and the upper and lower bounds (envelope)for the inviscid surfacevelocity are shownin
Figure 36. The first-harmonic surfacevelocity, as determined by the input value of PI,-o_,

is of relatively small amplitude for this case. However, for pressure excitations at higher

amplitude, the viscous-layer separates on the blade suction surface just upstream of the

trailing edge, thereby precluding a continuation of the unsteady viscous calculation into the
wake.

Since the turbine blade has a blunt leading edge, the unsteady stagnation-point analysis,

described in § 4.3, was applied at each time step to provide the upstream velocity profiles

needed to advance the viscous-layer solutions along the blade suction and pressure surfaces.

For this case, the unsteady stagnation point motion is confined to a small interval of length

2]r_] _-, 0.0037. A series of representative velocity profiles for the periodic flow within the

stagnation region at four different times (i.e., t = r/2, 7r, 37r/2 and 2_r) are shown in Fig-

ures 37 and 38. Here the instantaneous streamwise-velocity profiles are presented in the

body-fixed frame of reference, and the abscissa on each plot refers to the location on the

blade surface at which the velocity profile is determined. The interval shown in Figure 37 is

centered about the mean location of the stagnation point; that in Figure 38, about the in-

stantaneous location, i.e., the location at which/)'_ = 0 in the body-fixed frame of reference.

Note that the velocity profiles are shown over a much narrower interval, [-0.02[ri[, 0.02[ri[],

in Figure 38, where the profiles indicate that reverse flow occurs in the immediate vicinity

of the instantaneous stagnation point location.

The viscous-layer calculation for the reference turbine blade and its wake was performed

assuming that instantaneous transition from laminar to turbulent flow occurs at r/7"t¢ = 0.05

on both the pressure and suction surfaces of the blade. Here, r is the distance along the blade

surfaces measured from the mean leading-edge stagnation point location, and the subscript

te refers to the values of _" at the blade trailing edge. The grid used in this calculation had

77 points along the blade surface and 54 points along the reference wake streamline. It is

a stretched grid with Ar _ 0.002 at the farthest upstream point and AT _ 0.0001 at the

trailing edge. The largest value of A_- on the blade, i.e., 0.052, occurs near midchord. The

streamwise intervals grow aft of the trailing edge from Ar _ 0.0001 to approximately 0.083

one chord length downstream of the blade row. This distribution ensures that there are

at least 20 points per streamwise wavelength of the unsteady excitation. The viscous-layer

calculation was carried out using 71 uniformly stretched points across each boundary layer,

with K, = 1.045 and A_/= 0.04 at the blade surface. The wake grid consisted of 141 points

across the viscous layer stretched in the same manner as on the blade surface. A total of 40

uniform time steps were used per temporal period of the unsteady excitation.

Results of the unsteady viscous-layer calculation are shown in Figures 39 through 41.

Temporal mean values and upper and lower bounds for the displacement thickness and wall

shear stress along the upper and lower surfaces of the reference turbine blade are shown in

Figure 39; corresponding results for the wake displacement thickness and minimum stream-

wise velocity, in Figure 40. Here, the upper and lower bounds of a viscous-layer response
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quantity, say the displacementthickness,aredefinedas

_4- eo

5 = 50 + 2 _ Ign], (5.11)

and _w is the displacement thickness of the complete wake. Wake velocity profiles at four

different instants of time are depicted in Figure 41. The unsteady response of the viscous

layer is essentially linear for this example, i.e., the temporal mean and the steady viscous

solutions are almost identical, and the Fourier amplitudes of the higher (n > 2) harmonic

components of _, _,o and Uw=a, are negligible.

The foregoing results demonstrate the new capabilities that have been added to the

UNSVIS code, i.e., an unsteady stagnation region analysis and a modified unsteady wake

analysis. These results also demonstrate the present weak inviscid/viscid interaction pre-

diction capability that results from a sequential coupling of a linearized unsteady inviscid

solution, determined using LINFLO, and a nonlinear unsteady viscous-layer solution. Un-

fortunately, since boundary-layer separation usually occurs in realistic configurations, and a

weak interaction analysis breaks down in such cases, a weak interaction analysis has a lim-

ited range of application. This is particularly true for compressor cascades where, because

of adverse mean pressure gradients, separation occurs near the blade leading edges. There

is an important need, therefore, to develop a simultaneous coupling (or strong interaction)
solution procedure for separated unsteady cascade flows.
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6. Concluding Remarks

Linearized inviscid and nonlinear viscous-layer unsteady aerodynamic analyses and codes

have been developed for predicting subsonic unsteady flows through isolated, two-dimensional

blade rows. The inviscid analysis can be applied to predict the aerodynamic response to

structural (i.e., blade motions) and external aerodynamic (entropic, vortical, and acoustic)

excitations. It provides very efficient response predictions for realistic cascade configura-

tions, and should therefore be useful for turbomachinery aeroelastic and aeroacoustic design

applications. The viscous analysis can be applied to predict the viscous-layer response that

arises from imposed inviscid conditions at the blade and wake surfaces. At present only a

weak or sequential coupling of the inviscid and viscous-layer solutions has been considered.

The development of a strong inviscid/viscid interaction analysis involving a simultaneous

coupling of the inviscid and viscous solutions is planned as future work.

Under the present phase of this overall research effort a composite (global/local) mesh

analysis has been developed for determining the linearized unsteady velocity potential. The

composite-mesh capability allows a great deal of flexibility in prescribing a suitable mesh

for the accurate resolution of an unsteady cascade flow, and this type of capability will

be essential for analyzing gust encounters in unsteady transonic flows with moving shocks.

However, based on the parametric studies reported herein, a global-mesh analysis appears

to be quite adequate for analyzing low speed flows, provided that a sufficiently dense mesh

is employed. Moreover, a global mesh analysis requires only about one-fourth of the CPU

time needed for a composite analysis. Also, under the present effort, an existing unsteady

viscous layer analysis has been extended by incorporating a similarity analysis for the flow

in the vicinity of a moving stagnation point, and by properly accounting for the jumps in

the inviscid flow variables across vortex-sheet unsteady wakes.

The linearized inviscid (LINFLO) and nonlinear viscous-layer (UNSVIS) analyses have

been demonstrated via application to compressor, turbine and flat-plate blade rows. The

numerical results indicate that mean-flow nonuniformity has an important impact on the

pressure responses of cascades subjected to vortical excitations. In particular, high wave

number vortical gusts produce pressure responses in real blade configurations that differ

substantially from those occurring in corresponding flat plate configurations. The viscous-

layer analysis has been applied to unstaggered flat plate and to turbine cascades subjected

to acoustic excitations coming from upstream or downstream and traveling in the axial di-

rection. The flat-plate example is, perhaps, the simplest unsteady cascade problem that can

be analyzed, both because of the geometric simplicity and because the unsteady pressure is

nonsingular at the flat-plate leading edges. The numerical results indicate that the viscous

layer responds linearly, for the most part, to acoustic excitations from upstream, but sig-

nificant nonlinear response components occur for downstream excitations at high temporal

frequency and/or high amplitude, which travel against the mainstream velocity. The numer-

ical results for the turbine demonstrate the present weak inviscid/viscid interaction solution

capability for a realistic cascade configuration.

Because of boundary-layer separation the range of application of a weak inviscid/viscid

interaction analysis is severely limited. For example, the mean pressure rise produced by a

compressor blade row typically causes boundary-layer separation very near the blade leading
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edges,thereby precludinga continuation of a direct viscous-layercalculation along the blade
and into the wake. Thus, the developmentof a strong inviscid/viscid interaction analysis
will be neededsothat the effectsof viscousdisplacementon the unsteadypressureresponse
can be included in aeroelasticand aeroacousticdesigncalculations. The linearized inviscid
responseto high wavenumber gusts, and the linear vs nonlinear responseof viscouslayers
to entropic, vortical and blade-motion excitations are other issuesthat will require further
study and clarification.
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List of Symbols

All physical parameters listed below are dimensionless. Lengths have been scaled with re-

spect to blade chord, time with respect to the ratio of blade chord to upstream freestream flow

speed, density and viscosity with respect to their upstream freestream values, respectively,

velocity with respect to the upstream freestream flow speed, normal and shear stresses with

respect to the product of the upstream freestream density and the square of the upstream

freestream flow speed, temperature with respect to the square of the upstream freestream

speed divided by the fluid specific heat at constant pressure, and entropy with respect to

the fluid specific heat at constant pressure. The number(s) in parentheses at the end of each

symbol description indicates an equation in which the symbol appears.

Roman

A--oo

A

a0

B

B

b, c

dv

dT¢

e

_', P, {7

F

f,g

G

D

H

Constant vector , (3.23).

Inner region turbulence model parameter, (4.11).

Speed of sound propagation in steady background flow, (3.7).

Constant, (3.26).

Moving blade surface.

Blade mean position, (3.28).

Stagnation-region constants, (4.42), (4.49).

Differential vector tangent to path of integration, (3.20).

Differential element of arc length along a streamline, (3.19).

Unit vector, (3.18).

Dependent variables in Levy-Lees transformation, (4.18).

Complex function of mean-flow stream function, (3.26).

Dependent similarity variables for stagnation region, (4.31).

Cascade gap vector (= Gen), Figure 1.

Total enthalpy, (3.48).

Total enthalpy in steady background flow, (3.37).
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h'

i

g,

l,i

M

m

n

P

P

Pr, PrT

p+

p

Q,Q

7_

Re

Reo

r

r, F

First-order unsteady total enthalpy, (3.41).

Turbulent total enthalpy fluctuation, (4.3).

Imaginary unit, (2.1).

Grid stretching factors used in viscous-layer calculations, (4.50), (4.51).

Functions appearing in viscous region similarity equations, (4.22), (4.34).

Mach number in steady background flow, (3.7).

Blade number index, Figure 1; complex amplitude of first-harmonic

unsteady aerodynamic moment about midchord, Figure 14.

Unit normal vector, (3.3).

Pressure, (3.36).

Pressure in steady background flow, (3.7).

Prandtl number, turbulent Prandtl number, (4.3), (4.6).

Inner region turbulence model parameter, (4.11).

First-order unsteady pressure, Equation (3.40).

Complex amplitude of first-harmonic unsteady pressure, (2.4).

Functions associated with Levy-Lees transformation, (4.17), (4.19).

Surface heat flux, (4.8).

Surface (blade, wake or shock) displacement vector, (2.1).

Reynolds number, (4.2).

Reynolds number based on viscous-layer momentum thickness, (4.32).

Complex amplitude of surface (blade, wake or shock) displacement

vector, (2.1).

Flat-plate displacement tangential to surface, (4.30).
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Sh

Sh

S

T

Tc

t

U, V

ve

U_,n

IL/, ,0 t

V

_r

V

VR

V.

V I

Moving shock surface.

Shock mean position, (3.30)

First-order unsteady entropy, (3.39).

Complex amplitude of first-harmonic unsteady entropy, (2.2).

Temperature, (4.4).

Temperature in steady background flow, (3.7).

Temperature constant used in Sutherland's law, (4.5).

First-order unsteady temperature, (3.40).

Time, (2.1).

Unsteady velocity components along and normal to a moving blade

surface or reference wake streamline, (4.1).

Wake centerline velocity, Figure 26.

Wake centerline velocity in steady background flow, Figure 26.

Fourier component of unsteady wake centerline velocity, Figure 26.

Streamwise and normal components of turbulent velocity fluctuation, (4.2).

Velocity, (3.1).

Velocity in steady background flow, (3.1).

First-order unsteady velocity, (3.4).

Complex amplitude of first-harmonic unsteady velocity, (3.5).

Complex amplitude of first-harmonic rotational unsteady velocity, (3.8).

Complex amplitude of first-harmonic source-term unsteady velocity, (3.8).

Turbulent velocity fluctuation, (4.14).
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W

W

X

x

x,y

y+

Greek

OLI,... ,0t6

7

_tr

A

Ap

A_, At/

Moving wake surface.

Wake mean position, (3.29).

Lagrangian coordinate vector, (3.18).

Position vector, (2.1).

Cartesian coordinates along and normal to mean position of blade chord,

Figure 1.

Reynolds number based on friction velocity and normal distance from blade.

Coefficient functions in Levy-Lees equations, (4.22).

Acoustic attenuation constant, (2.4).

Fluid specific heat ratio, (3.7).

Turbulence intermittency factor, (4.15).

Drift function, (3.19).

Complex amplitude of first-harmonic unsteady pressure difference (lower

surface - upper surface) acting on reference (m = 0) blade, Figure 7.

Mesh spacings, (4.50), (4.51).

Viscous-layer displacement thickness, (5.8).

Viscous-layer displacement thickness in steady background flow, (5.11).

Fourier component of viscous-layer displacement thickness, (5.8).

Small parameter (<< 1); Turbulent eddy viscosity, (4.6).

Turbulent eddy viscosity in steady background flow, (4.22).

Turbulent eddy diffusivity, (4.6).

First-order unsteady vorticity, (2.3).
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¢

e

O,

p

_Y

7"

_w

Tw,n

7", n

¢

¢.

¢$,,
&

Complex amplitude of first-harmonic unsteady vorticity, (3.24).

Cascade stagger angle, Figure 1.

Dependent similarity variables, (4.32), (4.42).

Wave number vector, (2.2).

Molecular viscosity, (4.5).

Molecular viscosity in steady background flow, (4.22).

Cascade axial and "circumferential" Cartesian coordinates, Figure 1;

independent similarity variables, (4.17), (4.33).

Density, (4.1).

Density in steady background flow, (3.6).

First-order unsteady density, (3.40).

Interblade phase angle, (3.5).

Unit tangent vector, (3.3).

Surface shear stress.

Surface shear stress in steady background flow, Figure 26.

Fourier component of surface shear stress, Figure 26.

Viscous-layer coordinates along and normal to blade surface and

reference wake streamline, (4.1).

Velocity potential for inviscid steady background flow, (3.6).

Velocity potential for first-order inviscid unsteady flow, (3.40).

Complex amplitude of first-harmonic unsteady velocity potential, (3.11).

Complex amplitude of first-harmonic convected potential, (3.25).

Phase angles of the first-harmonic displacement thickness, wall shear stress,

wake centerline velocity, and viscous-layer edge velocity, Figure 29.
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X, Xo

f)

w

M_thematica]

b/Dt

D/Dt

Im{ }

[l

Subscripts

B

E, R

i, 0

l, n

Tn

N, T, z, ,7

and

Outer region turbulence model parameters, (4.13), (4.14).

Stream function for inviscid steady background flow, (3.20).

Steady flow angle, Figure 1.

Temporal frequency, (3.4).

Convective derivative operator, (4.2).

Convective derivative operator based on mean-flow velocity, (3.9), (3.40).

Imaginary part of { }, Figure 7.

Real part of { }, (2.1), Figure 7.

Gradient operator, (3.6).

Change in a flow quantity across a surface of discontinuity, (3.29).

Reference blade surface, (2.1).

Wake centerline, Figure 27.

Acoustic excitation, response, (2.1).

Edge of viscous layer, (4.7).

Incident pressure or irrotational velocity disturbance, (2.4);

initial r-station for viscous-layer calculation, (4.49).

Inner, outer turbulent regions, (4.10), (4.12).

Integer indices.

Blade number index, Figure 1.

Indicates direction: N -- normal to inlet freestream direction, (3.18),

T -- parallel to inlet freestream direction, (3.18), z -- out from the

page, (3.20), r/--cascade "circumferential" direction, (3.31), and

-- cascade axial direction, (3.33).
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$

S

Sht¢l,7_

te

W, kY_

W

Superscripts

I

Jl-,

Moving blade, wake or shock surface, (3.2).

Mean position of blade, wake or shock surface, (3.2);

stagnation region variable, (4.28).

Moving shock surface, (3.36).

Blade trailing edge, (4.16).

Wake value, (4.24); minimum wake value, Figure 39.

Wall, i.e., blade surface, value, (4.8).

Axial locations at finite distance upstream and downstream from blade

row, (2.4); point of intersection (__,r/_) of axial line _ = __ and

reference blade stagnation streamline, (3.20).

Far upstream/downstream freestream value of a steady flow variable,

Figure 1; far upstream/downstream value of an unsteady flow variable, (2.4).

Turbulent fluctuation, (4.2).

Upper, lower viscous layer, (4.24).

Steady background flow quantity, (3.11).

Turbulent correlation, (4.2).

Time-dependent flow variable, (3.1), (3.4).
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and a = 0: (a) t = r/2; (b) t = _-; (c) t = 3r/2; (d) t = 2r.

Figure 38. Velocity profiles in the neighborhood of an instantaneous stagnation point

location for the turbine cascade subjected to an upstream acoustic excitation with pI,-_¢ =

(0.35,0), w = 1 and a = 0: (a) through (d) as in Figure 36.

Figure 39. Temporal mean values and upper and lower bounds for the displacement thick-

ness and surface shear stress along a turbine blade surface for an upstream pressure excitation

with pl,-oo = (0.35, 0), w = 1 and a = 0.

Figure 40. Temporal mean values and upper and lower bounds for the displacement thick-

ness and minimum wake streamwise velocity along a turbine wake for an upstream pressure

excitation with pl,-_o = (0.35,0), 0., = 1 and a = 0.

Figure 41. Streamwise velocity profiles in the wake of a turbine blade for an acoustic

excitation from upstream with pz,-oo = (0.35, 0), w = 1 and a = 0.
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Figure 3: High Reynolds number steady flow over a blade surface.

59



1 0.21

2 0.23

3 0.25

4 0.27

5 0.29

6 0.31

7 0.33

8 0.35

9 0.37

0.6

M 0.4-

0.2-

Pressure (lower) surface

0.130.0 0'.2 0'.4 0'.6 0'.8
X

.0

Figure 4: Mach number contours and blade surface Mach number distributions for steady

flow at M_¢¢ = 0.3 and fl__ = 40 deg through the EGV cascade.
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Figure 6: Global and local meshes used for the EGV unsteady flow calculations.
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Figure 7: In-phase component (real part) of the linearized unsteady potential due to the

interaction of a vortical gust with vn,-oo .en = (1, 0), w = 5 and a = -2rr and the EGV

cascade: (a) global-mesh calculation; (b) composite-mesh calculation.
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Figure 8: Global- and composite-mesh solutions for the unsteady pressure-difference response
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the EGV cascade: (a) in-phase component (real part) of the unsteady pressure difference;

(b) out-of-phase component (imaginary part).
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subjected to vortical gusts with vn,-o¢ "eN = (1,0) and w = 5.
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Figure 12: Unsteady pressure-difference response of the EGV and corresponding flat-plate

cascades subjected to a vortical gust with vn,__ • eg = (1,0), w = 5 and _r = -rr.
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Figure 13: Unsteady pressure-difference response of the EGV and corresponding fiat-plate

cascades subjected to a vortical gust with vn,-_o • eN = (1,0), w = 5 and a = -2rr.
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Figure 14: Unsteady pressure-difference response of the EGV and corresponding flat-plate

cascades subjected to a vortical gust with vn,-oo .eN = (1,0), o., = 5 and a = -3r.
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Figure 16: Mach number contours and blade surface Mach number distributions for steady

flow at M-oo = 0.19 and f_-oo = 45 deg through the turbine cascade.
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Figure 17: Drift and stream contours for steady flow at M__ = 0.19 and f___ = 45 deg

through the turbine cascade.
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Figure 18: Contours of the in-phase component of the unsteady vorticity for the turbine
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Figure 21: Unsteady pressure-difference response of the turbine and corresponding flat-plate

cascades subjected to a vortical gust with vn,-oo • eN = (1,0), w = 5 and a = -rr.
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Figure 22: Unsteady pressure-difference response of the turbine and corresponding flat-plate

cascades subjected to a vortical gust with vn,-oo-eN = (1,0), w = 5 and a = -27r.
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Figure 25: Unsteady pressure distributions along blade and wake for an unstaggered flat-

plate cascade (fl = O = 0deg, M__ = 0.5 and G = 1) subjected to a unit-amplitude,

]pt,-_] = 1, pressure excitation from upstream with _,.-oo = aG -1 = O.

81



Re{p}

1.0

0.5

0.0

-0.5

-1.0

1.0 _-_

0.5

Ira{p}

0.0

-0.5

-1.0
0.00 0.25 o.5o 0.75 1.00 1.25 1.50 1.75 2.00

X

Figure 26: Unsteady pressure distributions along blade and wake for an unstaggered flat-

plate cascade (with f_ = G = 0 deg, M__ = 0.5 and G = 1) subjected to a unit-amplitude,

[Pl,+o_[ = 1, pressure excitation from downstream with _,1,+_ = aG-Z = O.
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Figure 27: Temporal mean and Fourier magnitudes of the displacement thickness, _, wall

shear stress, _r,_, and wake centerline velocity, UE, for turbulent flow through an unstaggered

fiat-plate cascade (f_ = @ = 0deg, G = 1, M = 0.5 and Re = 106) subjected to an incident

pressure disturbance from upstream with p[,-oo = (0.5, 0), w = 5 and (r = 0 deg.
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Figure 28: Temporal mean and Fourier magnitudes of the displacement thickness, _, wall

shear stress, _r_, and wake centerline velocity, 0_, for turbulent flow through an unstaggered

flat-plate cascade (fl = O = 0deg, G = 1, M = 0.5 and Re = 106) subjected to an incident

pressure disturbance from downstream with Pt,+oo = (0.5, 0), w = 5 and a = 0 deg.
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Figure 29: Fourier amplitudes of _, _,_ and/_] g for an unstaggered flat-plate cascade (fl =

O = 0 deg, G = 1, M = 0.5 and Re = 106) subjected to pressure excitations from upstream
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Figure 30: Relative phase angles of first-harmonic displacement thickness, wall shear stress,

and wake centerline velocity for an unstaggered flat-plate cascade (_ = O = 0 deg, G = 1,

M = 0.5 and Re - 108) subjected to pressure excitations from upstream with pl,-_ = (0.5, 0)

and a = 0 deg.
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Figure 31: Fourier amplitudesof _, _r_,andUg for an unstaggered flat-plate cascade (f_ = O =

0 deg, G = 1, M = 0.5 and Re = 10 s) subjected to pressure excitations from downstream

with Pt,+_ = (0.5, 0) and a = 0 deg.
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Figure 32: Relative phase angles of first-harmonic displacement thickness, wall shear stress,

and wake centerline velocity for an unstaggered flat-plate cascade (_ = O = 0 deg, G = 1,

M = 0.5 and Re = l0 s) subjected to pressure excitations from downstream with px,+oo =

(0.5, 0) and a = 0 deg.
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Figure 33: Fourier amplitudes of _, _,o and _rE vs amplitude, Im,-ool, for an acoustic exci-

tation from upstream, with w = 5 and a = 0 deg, interacting with an unstaggered flat-plate

cascade (f_ = O = 0 deg, G = 1, M = 0.5 and Re = 10s).
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Figure 34: Fourier amplitudes of _, _r,_ and UE vs amplitude, Im,+_l, for an acoustic excita-

tion from downstream with, w = 5 and o' = 0 deg, interacting with an unstaggered flat-plate

cascade (f_ = O = 0 deg, G = 1, M = 0.5 and Re = 106).
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Figure 36: Temporal mean values and upper and lower bounds of the inviscid surface

(viscous-layer edge) velocity for the turbine cascade subjected to an upstream pressure ex-
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and surface shear stress along a turbine blade surface for an upstream pressure excitation
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Figure 40: Temporal mean values and upper and lower bounds for the displacement thickness

and minimum wake streamwise velocity along a turbine wake for an upstream pressure

excitation with pz,-¢_ = (0.35, 0), w = 1 and a = 0.
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Figure 41: Streamwise velocity profiles in the wake of a turbine blade for an acoustic exci-

tation from upstream with pl,-oo = (0.35, 0), w = 1 and a = 0.
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A. Details of the Viscous-Layer Solution Procedure

The viscous-layer equations are solved numerically using an implicit finite-difference ap-

proach, which is described in this Appendix. The finite-difference approximations used to

discretize the governing equations and the quasilinearization applied to the resulting system

of nonlinear equations is discussed in section A.1. The recursion relations and the associ-

ated coefficients needed to solve the block-tridiagonal system of equations are given in A.2.

Finally, the wake analysis is described in A.3.

A.1 Finite-Difference Approximations

The partial derivatives appearing in the governing viscous-layer equations are all first

derivatives, with the exception of those accounting for viscous effects in the streamwise

momentum and energy equations, which introduce second derivatives with respect to y. In

the present analysis first-order accurate backward differences are used to approximate the

and t derivatives. First and second partial derivatives with respect to 7? are approximated

using central differences. The notation used below is defined in the illustrations of Figures

A.1 and A.2. The subscript n is the mesh-point index in the y-direction, so that (-),, refers

to a quantity evaluated at the location, qn.

First derivatives of the dependent variables are written as

and

(OA) A2,,-AI,, (A.2)

( O__y) A_,,_+ I - A2,,,-x (A.3)

where

and

At = t 2 - t 1 ,

AYn-1 : qn -- Yn--1

Ar/,_ = y,,+l -- 7/,, .

Here, the subscript 1 refers to the current _-station, previous time level, 2 refers to the current

_-station and current time level (i.e., the solution station) and 3 refers to the previous _-

station, current time level (see Figure A1). Second derivatives in the r/-direction are written

in the form

0772 ] n _ AYn "_" AYn-1 AYn -- AYn-1 / "

If, as in all of the calculations performed here, ]Ayn/Ayn-1 -- 1] << 1, the q-derivatives remain

formally second-order accurate.

=
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3 2

Figure A.I: Computational moleculein the _- and t-directions.

T/

n=4

At/3

n=3 --

Ar/2

n_ 2 _-

At/1

n=l --

Figure A.2: Computational grid in the ,/-direction.

Before discretizing the equations, the continuity, Eq. (4.19), streamwise momentum (4.20)

and energy (4.21) equations, respectively, are rewritten in the following forms,

02- 0]2

A1_ + _ + A102-+ An = 0, (1.5)

02- 02- ]202- 0 (102-_
A2-_ + Ai2--_- + N + A3U + A42 -2 + AsG - N \ --_-_) = 0 (A.6)

and

A_+A'2-N+VN+AJ'_+A'2- +As_-A_N (l-02-N -N _,N/=o, (1.7)
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where the coefficients A1, ... ,An are givenby [see (4.22)]

A_ = 2_Q/Q,

A4 = _4 + (_2a3)/2,
AT = a5 + (a_a6)/2,

Aao = Q/Q and

A2 = 2_/(Q/),),

A5 = -(a4 + a3) ,

& = -(a6 + as) ,
All =-c_1c_3 •

A3 -- O_10_3,

As ----- O_10/6

A9 = a2 ,
(A.8)

The nonlinear terms are quasilinearized by writing terms of the form AB as

AB ,_ AB + AB - AB , (A.9)

where the overbar denotes a known quantity (e.g., from the previous iteration).

After quasilinearizing and discretizing the streamwise momentum equation, it can be

written as

F F F B V B a
Au,n,_2,n_ 1 -}- B,,,..T2,. + C(.,,..T2,,.+1 + .,.V2,. + .,.G2,,, = D.,. , (A.10)

where

and

AuF,n __ --2I,__ _ 1)2,,.
A_n_I(ATln -_- AT/n-l) /_n 9V AT]n-1 '

B F," A2 A1 -- At + _--_ (2.T2,. - 3%,,,) + A3 + 2A4.P2,.

,
+ A_,, + Ar/,,__ k, Ar/. At/._1/

V2,. 21.+_
C F -

_'" AT/. + Ar]._a Ar/.(Ar_. + Ar]._x) '

B v = .P2,.+1 - 2_,.-_

B,,a,n = As

(A._)

(A.12)

(A.13)

(A.14)

(A.15)

The energy equation is similar in form to the momentum equation, except that off-

diagonal terms in both .T" and _ arise due to the presence of r/-derivatives of both quantities,

resulting in the quasilinear discretized form

A_,._'2,.-1 + BE,..T'2,.F + CEF,n._'2,n+I + Bv,.v2,. + A_,._2,.-t + Bz,._2,.a + C aE,,,G2,,,+t = DE,,,
(A.17)

where

A F
E,n

B F
E,n

2A9(1"-I - l"-l )'_2'"-x

A_Tn_I(AT/. + Ar/n_t) '

A1
A_(_,. -a_,.) + A_,. + 2A_'2,.

(A.18)
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and

2A9(/.+} - 1.+½)f'2,.

Al]n(Art n J[- A,n_l)

C F 2A9(1.+} - l'.+_)f'2,.+:
E_ _

B V

2A9(/._½ - I._½)f'2,.

A_._l(Art. + Art._l) '

Art.(Art. + Art._1)

_2.n+1 -- _2,n--I

/_rt. + Artn-1 '

--92.n

Art. + Art.-i

2i._i
Art.__(Ar/,_ + Art.__) '

Ba As Aa - 2I.+_
E,. - At + _-_'2,. + a6f'2,. + Arl.(A% +Art._,)

2i.__ + m,
+ Aq.__(Art,_ + AT/._I)

C a _--
E,. Art. + Art._a Aq.(Art. + Ar/.__)

DE,. -- At + --_ 2.n_2.n -_- Artn Jr A,n-1 (_2'n+1 -_2.n-1)

^

A9(l.+_ - l.+_) (._2,,.+1 _ f'_2,.)
+A_f'2,,_O2,,_ + azf'_2,. + Ar].(A_. + A_].-1)

Ag(I.__-l._i) _2
A,._,(Art. + A,.-,) ( _'"- _L-,)

The continuity equation, which is linear, has the discretized form

AF _'2,._1 + BF._'2,. + V2,.- _;2,.-_ = D_,,_

where

and

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)

A1Ar/,_-I AloA%-I (A.27)
A_,_ - 2A_ + 2 '

BF F (A.28)

A1Art.-, -f.
= 2A_ ( 3,. + _'3,.-a) - AnArt.-x •DC_n

(A.29)

A.2 Recursion Relations

To facilitate the solution of the above equations, the following recursion relations are

introduced for _2,- and _2,.:

F F T rQ2,._x•_'2,. = P$ + Q,_V2,.-, + Rnf'2,n-1 +

and

E V E TE_,.___2,. = P._ + Q. 2,.-a + R._'2,,,-a +

(A.30)

(A.31)
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Substituting theseexpressionsinto the discretizedgoverningequationsand collecting terms
gives

F
H_.,U2,,, + H_._2,,, + Hf.V2,., = D F - A,,,,,.T'2,.-1

and (A.32)

where

and

F A aH_.U2,. + H_.92,,. + H_,_Y2,,_ = D E -AE,n.T'2,._I- E,n_2,n-1,

H F
1,r_ =

H F

Dr=

F F
B,,F. + C_,,,_Rn+, ,

+CLTL, ,
F F

B,,V,, + C.,,,Q.+, ,

D_,,.-G_.P:+,

H E = B F
1,n E,n

H E _ B a
2,n -- E,n

H E = B v
3,n E,n

F F G E
+ CE,nRn+l -_- C_,nRn+ 1 ,

F F G E
-1-CE,nT_+ 1 "4-C_,nT_+ 1 ,

F F G E
+ C_,,,Qn+I ÷ CE,.Q,_+x ,

(A.33)

(A.34)

DE. DE,n F F G EC_,,,P_,+,= - -C_:,,_P,_+, .

Solving for 1)2,,,, using continuity (A.26), and substituting into the momentum and energy

.F .v A,a -- A. 5r2,._,- A_ Y2,.-,- . g_,.-,

equations yields

.F .F

H_,._2,. + H2,_Q2,_= D_f

and

,E H,E _H,,,,t'2,_ + 2,.g2,,. =

respectively, where

D:E .F .V .G- A E .T':,.,_, - A E V2,.-1 -- AE _2,n-, ,

and

(A.35)

(A.36)

(A.37)

(A.38)

,F = HF _HF BFH,,. 1,. 3,n c,. ,

,F = HF
2,n 2,n

D_,F = DF- H_.Dc,. ,

A* v = H F
3,n '

A*.f F F F= A,,,,,-H_,,_A_,,,,
,G

A,,,,, = 0

,E HE _ HE ' BF
HI,n : 1,n 3,n ctn

A *Ff = H E
3tn _*

A .E_ A F E F= E,n--H_,.A¢,. ,

A*E° = A c
S_n "
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Letting bF and ba represent the right-hand sides of the momentum and energy equations,

respectively, leads to the system of equations

}{ /H,,, H_,, .T'2,, bE (A.39)
.E .E _ ,

H1, . Hi, . 92,, ba

which can be solved using Cramer's rule. Defining A by

,F ,E .E ,F

A = HI,nH2,,_ - Ha,,,H_, . , (A.40)

i.e., the determinant of the coefficient matrix, _'2,,_ can be written in the form

,E

: -- _ _ __A*F -- _ A *°
\

•5;'2,. H2"_ (D: _" A:Vl;2,,_-a : Y2,.-a ,, _;2,.-,)-
A

,E

H2'n (D:f A *v- .F .oA - E I;_,,_,- A E Y'2,,-,- AE _2,,_-,) (A.41)

Comparing Eq. (A.41) to Eq. (A.30) gives

pF = allD_ F + aa2D *F" ,

,V
QF = _ariA: v _ a12A E ,

,F .F

R E = -a,lA,, - a12A E (A.42)
.O ,G

TF = -aliA u - al2A E ,and

where

and

.E

all -- H2'" (A.43)
A

.F

H2'--_ (A.44)
a12 --'-- -- i

Analogous expressions are easily derived for G2,,.

The recursion coefficents at the y-location 0,, i.e., P/, pE, etc., are related to the values of

the coefficients at points m > n only, while the expressions for the flow variables themselves

relate the unknown variables at n to the known values at points m < n. Therefore, the

recursion coefficients can be evaluated by starting at the outer edge, n = ne, using the edge

boundary conditions to set the values of the coefficients there, i.e.,

p£ = l, = l,

Q F = O, Q E = O,

R.5 = o, R.5 = o, (A.45)

TF = 0, T_ = 0,

and sweeping inward to the wall, solving for all of the coefficients. The flow variables are

next determined by using the wall boundary conditions [i.e., Eq. (4.26)] to set F, V and

at n = 1, and then directly applying the recursion relations to solve for the flow variables by

sweeping outward from the wall to the edge of the viscous layer.
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n=ne +
n =rte--1

n--4 --

n.__3

n--2

n=l --

n=2l -

n = 3l -

n =4/ -

n = nel- 1-_ 2

+n = nel

77

m

reference wake

streamline, 77= 0

Figure A.3: Computational grid in the y-direction for the wake.

A.3 Wake Solution Procedure

The wake viscous-layer analysis is similar to the blade-surface analysis, with changes to

the boundary conditions and the introduction of modifications to the definitions of some of

the independent and dependent variables, as described below. Edge conditions are applied

at both the upper and lower edges of the wake viscous layer and the r/= 0 coordinate line

is assumed to correspond to the wake reference streamline, so that 1) = 0 at 77 = 0. As

discussed in Chapter 4, the variables used in the upper- (i.e., 71 > 0) and lower-wake (i.e.,

77< 0) regions are defined differently, so that, for example, in the upper wake

- . and G=_+- - (A.46)
u$ n$ '

while in the lower wake

In order to ensure that the physical variables (i.e., f), l?" and/t) remain continuous across

the entire wake, the different variable definitions must be accounted for at the interface

between the upper and lower portions of the wake, at r/ = 0. This is easily done when

evaluating the governing equations at r/ = 0, where both upper- and lower-wake variables

are used simultaneously.

The details of the wake solution procedure are given below. For the purpose of the

present discussion, we assume that the mesh-point index in the 7/ direction, n, is equal to

one at 77= 0 and increases in the +r/-direction (i.e., in the upper wake), with n = ne at the
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upper edgeof the q-mesh. In the lower wake, the mesh-point index is given by 2I, 31,...,

nel, ascending with increasing distance from the reference wake streamline (see Figure A.3),

with n = nel at the lower edge of the q-mesh..

Wake Boundary Conditions

The boundary conditions for the wake are given in Eqs. (4.25) and (4.27). The imple-

mentation of these conditions into the numerical algorithm is discussed below.

The recursion relations used in the wake are defined like on the blade surface, i.e., in the

upper-wake region,

and

F1) F9v2., = P/+ Q, 2,,-, + R,,_'2.,,-1 + TffG2,,,-,

El) R E Tff92.,,_192,,_ = pE + Q, 2,n_lJ ff n Y2,n_ l ._

(A.48)

(A.49)

and in the lower-wake region,

F1) RE FU2,,t = pF + Q,, _,(,-a)t + ,t_'2,(,-1)t + T_l_2,(n-1)l

E RE T Eand _2,.t = P_ + Q.Y2,(,,-Ot + ..Y'2,(.-a)t + nl_2,(n-1)l •

(A.50)

(A.51)

With the edge conditions on 9v and G given at n = ne and n = nel, the edge values of the
recursion relations are written as

and

pF=pF =p =pE t=l,

Q.5=Q.5= = R°5= T£ = = 0

(A.52)

(A.53)

Q,F I = Q,E = RE = R Et = T_F = T,_E = O . (A.54)

The recursion relation coefficients are determined by applying Eqs. (A.42) in both the upper-

and lower-wake regions.

The values of .T" and _ at the wake reference streamline (n = 1) are determined by

writing the momentum and energy equations there, substituting the recursion relations from

the points immediately above and below this line (i.e., at n = 2 and n = 2I, respectively),

and simultaneously solving the resulting equations. The governing equations are written at

n = 1 in terms of upper-wake variables, so that whenever a value of .T" or G at n - 1 = 2I is

used, it is transformed to the appropriate form. Thus, at n = 1,

U2,,_-x =/-_'2,2t and G_,,,-x = _++G2,2t •u_
(A.55)

The discretized s-momentum equation at the point n = 1, with the boundary condition

1)2,1 = 0 incorporated, is

AuFI (][. F F Gr-%-_'2,2t+ B_,1_'2,1 + C_,1_-2,2+ B.,102,1 = D_,I •
U;

(A.56)
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The recursionrelations for 9v, written at n = 2 and n = 2I after expressing .T" and 9 at n = 1

in terms of upper variables, are given by

&2 =P: + +
and

TFH+eu+&,, +
•T'2,21 = P_ + "_2, 0;" 21[-I; _2,,

Using Eq. (A.58) for _'2,2 in the momentum equation gives

r F r0;
HF1.Tc'_,x+ H2,1_2,1 = D,,a - Au,i-_7-_ _'2,21 ,

u_

H F
1,1

H F
2,1

D,,F1

where

F F
= B_F1 + C_,I R2 ,

= B G F F,,,1+ C,,a T_

Du,1 F F= - Cu,IP _ •and

Similarly, substituting for .T'2at in Eq. (A.58) yields

H; pgr2,1 + H; r _2,1 = D_ F ,

where

= H F F F1,1 + A,,iR21 ,

H F aF ,rF f]_- I-It+

= D,,F,,,- A,,F,( 7u----+ •
and D_ v

(A.57)

(A.58)

(A.59)

(A.60)

(A.61)

The same procedure is applied to the energy equation, which is written at n = 1 in the

form

AF O[ F cF,,.T2a + Aa [I[ a a (A.62)
f-_._'2,21 + BE,I._2,1 + E,l'_+'e+ _2,21 + BE, I_2,1 + 6_,1_2,2 = DE, 1 'E,1 U_

where 132,, has been eliminated. The recursion relations for _, written at n = 2 and n = 21

after expressing 9v and G at n = 1 in terms of upper variables, are given by

_2,2 = PC "4- RE'_'2,1 + Tiff2,1

and (A.63)

(_7+_ TE [-I+__2,2t = P_ + R_:&,, +
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Substituting for _'2,2and _2,2in Eq. (A.62) yields

e&
H_,f'2,, + H_,a2,t = Df - a_,l- _ 2,21- aE,-=--a2,2,

V_ ' H + '
(A.64)

where

and

H E
1,1

H E
2,1

Df

B F F F G E= E,1 -Jv CE, 1R 2 "[- C_, 1R 2 ,

B e C F T f C G T E
= E,1 + E,1 2 + E,1 2

DEj C F pf_ C a RE= -- E,1 E,1 2 "

(A.65)

Substituting for 9v2,2t and _2,2l gives

H;S_'2,l + H_BG2,1 = O_ s (A.66)

where

and

H E F F AG _E(f_B[
= + AE,1R21+ "E,l" 21fy;_

H E F FUr Be + G E
= 2,a + AE,1T_t-'_+-_-_[ + AE,1T2t

DE AE'IP2'-_ + H_= -- _XE,I a 21 - +

(A.67)

With the starred coefficients defined in this form, Eqs. (A.60) and (A.66) can be solved as

before, to yield

•_'2,1- H_ED1F H;FDIE (A.68)
A A

and
.E .F

H I _.F H 1 _.s

_2,1 = ---_---Dx + --_--Da , (A.69)

where

A = H_ 'F Hi s - H; F H; E • (A.70)

Note that these reference streamline values are expressed in terms of upper-wake variables.

The solution in the wake is computed as follows. Using the edge conditions for the upper-

and lower-wake viscous layers, the recursion relation coefficients for each are computed by

sweeping inward from the edges to the centerline. The flow variables 9"-2,1 and _a,1 are

calculated from Uqs. (A.68) and (A.69), yielding their upper-wake values (i.e., 9r_1 and

_1). The quantities _- and _ at n = 1 need to be re-expressed in in terms of the lower-wake

variables, in order to apply the recursion relations, Eqs. (A.50) and (A.51), to obtain the

solution in the lower-wake region. These are calculated from the expressions

"_-2,1 _ZJ-2,l_]r:_+ /t$
- and G_,I- 772__G_1 • (A.71)

n,
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With the variables at n = 1 known, including _2,1 from the boundary condition applied

there, the recursion relations and the continuity equation are used to solve for all of the

unknowns at each mesh point, sweeping from n = 2 to n = ne on the upper wake and from

n = 2l to n -= nel on the lower wake.

Because the nonlinear discretized equations have been quasilinearized, the solution pro-

cedure described above is applied iteratively at each spatial and temporal location, until the

local solution has converged to a specified tolerance level.
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